IBM Enters Petascale Era with Blue Gene/P

By Michael Feldman

June 29, 2007

This week at the International Supercomputing Conference (ISC) in Dresden, Germany, IBM unveiled its next-generation Blue Gene architecture — Blue Gene/P. The new model is intended for users looking for petaflop-level computing and beyond. Like its Blue Gene/L predecessor, Blue Gene/P is targeted for big science applications and the very highest end of commercial HPC. According to IBM, Blue Gene/P is two and a half times more powerful than the Blue Gene/L generation and requires only slightly more power. A relatively modest two-rack Blue Gene/P configuration that IBM deployed in-house ended up as number 31 on the new Top500 list announced this week.

The previous-generation Blue Gene/L machines represent some of the fastest systems in the world. The Lawrence Livermore system currently holds the top spot on the Top500 list and a number of other Blue Gene/L installations are scattered throughout the list. But this is the end of the line for Blue Gene/L. IBM manufacturing will now switch over to the P line. Blue Gene/L purchases currently in the pipeline represent the last machines of the first generation.

The Blue Gene/P architecture is based on a quad-core PowerPC 450 ASIC chip, where each chip is capable of 13.6 gigaflops. A compute node includes the ASIC chip along with 2 GB of SDRAM DDR2 memory. Thirty-two of these nodes are aggregated onto a board and 32 of the boards are placed in a 6-foot high rack. The result is a 4096-core rack, which provides 13.9 teraflops (peak) of processing power. This represents the smallest Blue Gene/P system you can buy.

Although the original Blue Gene/L was dual-core, it did not implement cache coherency in the hardware. By contrast, Blue Gene/P is designed around cache coherent quad-core chips, so they can be treated as SMP nodes in the same manner as any multicore-based commodity cluster. This makes the new Blue Gene more suitable for multithreaded workloads based on standard software technologies like OpenMP.

Compared to Blue Gene/L, the new generation uses slightly faster PowerPC processors (850 MHz versus 700 MHz) and twice as many cores per chip (4 versus 2). L3 cache has been doubled from 4 MB to 8 MB and main memory per compute node has been quadrupled from 512 MB to 2 GB. Main memory bandwidth has also increased — from 5.6 to 13.6 GB/sec. In addition, the 3-D Torus and Tree networks have been upgraded, essentially more than doubling the bandwidth and cutting latencies in half. The increased capabilities provide a 2.4x increase in performance over Blue Gene/L, using roughly the same floor space and slightly more power.

A single 13.9-teraflop Blue Gene/P rack draws just 40 kilowatts, yielding 0.35 gigaflops/watt — possibly the best performance/watt metric of any general-purpose computing system on the planet. SiCortex’s MIPS-based cluster systems come close at around 0.32 gigaflops/watt. For comparison, Blue Gene/L offers a lower, but very respectable, 0.23 gigaflops/watt. Most x86-based high performance computing systems are an order of magnitude lower than that. As users build Blue Gene/P systems that scale to hundreds of teraflops and beyond, power efficiencies become even more critical.

And while not every customer will use Blue Gene/P to build petaflop systems, IBM anticipates at least one customer will put enough Blue Gene/P racks together to reach a sustained (Linpack) petaflop as early as next year. Apparently IBM has a few prospects that are considering purchasing the 80 or so Blue Gene/P racks required to build a such a machine. The architecture is actually designed to scale up 256 racks, which would come close to three Linpack petaflops. However, there are few customers who would know what to do with such power, and the cost would probably be prohibitive even for that select group. IBM realizes that, although there are many HPC customers with computational problems bigger than their machines, there are only so many organizations that have the right combination of money, workload, and software experience that’s required to take advantage of machines like Blue Gene/P.

In any case, the Blue Gene/P sales pipeline is already filling up. The U.S. Dept. of Energy’s Argonne National Laboratory, Argonne, Ill., will deploy the first Blue Gene/P system this fall. Argonne’s initial Blue Gene/P system will be a 114-teraflop machine, and the lab is on track to eventually install about half a petaflop. Argonne currently has a Blue Gene/L system and will continue to operate that machine through at least 2008.

Explaining the lab’s motivation to increase their Blue Gene investment, Ray Bair, Division Director for the Argonne Leadership Class Facility said: “Blue Gene has been a resounding success for scientific computing since its inception, both for DOE’s INCITE program at Argonne National Laboratory and in diverse science programs at institutions around the world. The breadth and scale of science problems that can be addressed with Blue Gene was another important factor. IBM designed Blue Gene/P with petascale scientific computing in mind, making performance and functionality improvements from top to bottom while preserving Blue Gene’s extraordinary balance.”

Other installations are being planned as well. In Germany, the Max Planck Society and Forschungszentrum Jülich are scheduled to begin installing Blue Gene/P systems in late 2007. Other Blue Gene/P deployments are being planned by Stony Brook University and Brookhaven National Laboratory in Upton, N.Y., and the Science and Technology Facilities Council, Daresbury Laboratory in Cheshire, England.

Since the public sector is the principal source of the money for capability-class supercomputers, Blue Gene systems tend to live almost exclusively in government labs and facilities. IBM has courted Wall Street, but has not closed any Blue Gene accounts there. With the increased emphasis on power and cooling costs, IBM is hoping that a tipping point will occur at some point and commercial entities will consider Blue Gene supercomputers as cost-effective alternatives to large HPC cluster systems.

What IBM is really counting on is that a good proportion of the installed Blue Gene/L base will upgrade to Blue Gene/P. Applications should port rather easily, requiring only a recompilation. Unfortunately, the two architectures won’t interoperate; a Blue Gene/P system won’t be able to bolt onto a Blue Gene/L rack to accelerate the original system. IBM does, however, offer a trade-in program for customers looking to retire their older models and get some credit against a Blue Gene/P purchase.

Because of the scale of the architecture and the extended lifetimes of these types of supercomputers, IBM put a lot of thought into reliability and system robustness. Efficient cooling design, soldered memory, and a low number of moving parts supports a low mean time between failure (MTBF) rate. From the feedback they received from Lawrence Livermore National Laboratory, it turned out that the lab’s Blue Gene/L system had an order of magnitude better MTBF than commodity-based systems installed there. When added to the cost savings realized from the system’s power efficiency, IBM offers a fairly compelling TCO story.

This message is tougher to sell in the commercial HPC space, where customers are still very sensitive to initial acquisition costs. According to Herb Schultz, Deep Computing Marketing Manager, IBM is aiming for around ten cents per megaflop for the new Blue Gene systems, which he feels is price competitive with other non-discounted HPC systems in the industry. But with the smallest installation being a 14-teraflop system, customers are looking at $1.4 million to join the Blue Gene/P club.

“If we can get customers to look more broadly at the overall system costs — the power and cooling bill over three or four years and the costs associated with system downtime — we think Blue Gene/P looks really good,” said Schultz. “So we’re trying to get people to look beyond the initial acquisition cost and focus on the total cost of operating the machine over its lifetime.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This