IBM Enters Petascale Era with Blue Gene/P

By Michael Feldman

June 29, 2007

This week at the International Supercomputing Conference (ISC) in Dresden, Germany, IBM unveiled its next-generation Blue Gene architecture — Blue Gene/P. The new model is intended for users looking for petaflop-level computing and beyond. Like its Blue Gene/L predecessor, Blue Gene/P is targeted for big science applications and the very highest end of commercial HPC. According to IBM, Blue Gene/P is two and a half times more powerful than the Blue Gene/L generation and requires only slightly more power. A relatively modest two-rack Blue Gene/P configuration that IBM deployed in-house ended up as number 31 on the new Top500 list announced this week.

The previous-generation Blue Gene/L machines represent some of the fastest systems in the world. The Lawrence Livermore system currently holds the top spot on the Top500 list and a number of other Blue Gene/L installations are scattered throughout the list. But this is the end of the line for Blue Gene/L. IBM manufacturing will now switch over to the P line. Blue Gene/L purchases currently in the pipeline represent the last machines of the first generation.

The Blue Gene/P architecture is based on a quad-core PowerPC 450 ASIC chip, where each chip is capable of 13.6 gigaflops. A compute node includes the ASIC chip along with 2 GB of SDRAM DDR2 memory. Thirty-two of these nodes are aggregated onto a board and 32 of the boards are placed in a 6-foot high rack. The result is a 4096-core rack, which provides 13.9 teraflops (peak) of processing power. This represents the smallest Blue Gene/P system you can buy.

Although the original Blue Gene/L was dual-core, it did not implement cache coherency in the hardware. By contrast, Blue Gene/P is designed around cache coherent quad-core chips, so they can be treated as SMP nodes in the same manner as any multicore-based commodity cluster. This makes the new Blue Gene more suitable for multithreaded workloads based on standard software technologies like OpenMP.

Compared to Blue Gene/L, the new generation uses slightly faster PowerPC processors (850 MHz versus 700 MHz) and twice as many cores per chip (4 versus 2). L3 cache has been doubled from 4 MB to 8 MB and main memory per compute node has been quadrupled from 512 MB to 2 GB. Main memory bandwidth has also increased — from 5.6 to 13.6 GB/sec. In addition, the 3-D Torus and Tree networks have been upgraded, essentially more than doubling the bandwidth and cutting latencies in half. The increased capabilities provide a 2.4x increase in performance over Blue Gene/L, using roughly the same floor space and slightly more power.

A single 13.9-teraflop Blue Gene/P rack draws just 40 kilowatts, yielding 0.35 gigaflops/watt — possibly the best performance/watt metric of any general-purpose computing system on the planet. SiCortex’s MIPS-based cluster systems come close at around 0.32 gigaflops/watt. For comparison, Blue Gene/L offers a lower, but very respectable, 0.23 gigaflops/watt. Most x86-based high performance computing systems are an order of magnitude lower than that. As users build Blue Gene/P systems that scale to hundreds of teraflops and beyond, power efficiencies become even more critical.

And while not every customer will use Blue Gene/P to build petaflop systems, IBM anticipates at least one customer will put enough Blue Gene/P racks together to reach a sustained (Linpack) petaflop as early as next year. Apparently IBM has a few prospects that are considering purchasing the 80 or so Blue Gene/P racks required to build a such a machine. The architecture is actually designed to scale up 256 racks, which would come close to three Linpack petaflops. However, there are few customers who would know what to do with such power, and the cost would probably be prohibitive even for that select group. IBM realizes that, although there are many HPC customers with computational problems bigger than their machines, there are only so many organizations that have the right combination of money, workload, and software experience that’s required to take advantage of machines like Blue Gene/P.

In any case, the Blue Gene/P sales pipeline is already filling up. The U.S. Dept. of Energy’s Argonne National Laboratory, Argonne, Ill., will deploy the first Blue Gene/P system this fall. Argonne’s initial Blue Gene/P system will be a 114-teraflop machine, and the lab is on track to eventually install about half a petaflop. Argonne currently has a Blue Gene/L system and will continue to operate that machine through at least 2008.

Explaining the lab’s motivation to increase their Blue Gene investment, Ray Bair, Division Director for the Argonne Leadership Class Facility said: “Blue Gene has been a resounding success for scientific computing since its inception, both for DOE’s INCITE program at Argonne National Laboratory and in diverse science programs at institutions around the world. The breadth and scale of science problems that can be addressed with Blue Gene was another important factor. IBM designed Blue Gene/P with petascale scientific computing in mind, making performance and functionality improvements from top to bottom while preserving Blue Gene’s extraordinary balance.”

Other installations are being planned as well. In Germany, the Max Planck Society and Forschungszentrum Jülich are scheduled to begin installing Blue Gene/P systems in late 2007. Other Blue Gene/P deployments are being planned by Stony Brook University and Brookhaven National Laboratory in Upton, N.Y., and the Science and Technology Facilities Council, Daresbury Laboratory in Cheshire, England.

Since the public sector is the principal source of the money for capability-class supercomputers, Blue Gene systems tend to live almost exclusively in government labs and facilities. IBM has courted Wall Street, but has not closed any Blue Gene accounts there. With the increased emphasis on power and cooling costs, IBM is hoping that a tipping point will occur at some point and commercial entities will consider Blue Gene supercomputers as cost-effective alternatives to large HPC cluster systems.

What IBM is really counting on is that a good proportion of the installed Blue Gene/L base will upgrade to Blue Gene/P. Applications should port rather easily, requiring only a recompilation. Unfortunately, the two architectures won’t interoperate; a Blue Gene/P system won’t be able to bolt onto a Blue Gene/L rack to accelerate the original system. IBM does, however, offer a trade-in program for customers looking to retire their older models and get some credit against a Blue Gene/P purchase.

Because of the scale of the architecture and the extended lifetimes of these types of supercomputers, IBM put a lot of thought into reliability and system robustness. Efficient cooling design, soldered memory, and a low number of moving parts supports a low mean time between failure (MTBF) rate. From the feedback they received from Lawrence Livermore National Laboratory, it turned out that the lab’s Blue Gene/L system had an order of magnitude better MTBF than commodity-based systems installed there. When added to the cost savings realized from the system’s power efficiency, IBM offers a fairly compelling TCO story.

This message is tougher to sell in the commercial HPC space, where customers are still very sensitive to initial acquisition costs. According to Herb Schultz, Deep Computing Marketing Manager, IBM is aiming for around ten cents per megaflop for the new Blue Gene systems, which he feels is price competitive with other non-discounted HPC systems in the industry. But with the smallest installation being a 14-teraflop system, customers are looking at $1.4 million to join the Blue Gene/P club.

“If we can get customers to look more broadly at the overall system costs — the power and cooling bill over three or four years and the costs associated with system downtime — we think Blue Gene/P looks really good,” said Schultz. “So we’re trying to get people to look beyond the initial acquisition cost and focus on the total cost of operating the machine over its lifetime.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This