A European’s Take On ISC2007

By Christopher Lazou

July 6, 2007

“The slow one will later be fast and the present now will soon be the past, the order is rapidly fading. The first one now will later be last, for the times, they are a changing…” sang by Bob Dylan, 1964.

Over 1200 participants from 44 countries attended the 22nd International Supercomputer Conference (ISC) from June 26-29, and 85 exhibitors took part in the associated exhibition in the city of Dresden.

This ISC annual event enables many Europeans to appraise the new technology from Japanese and U.S. vendors and to also be updated by our American colleagues about where they are in addressing the issue of leadership in large-scale scientific technical computing. The presentations at the conference were broad-based and some were at the cutting edge of developments. ISC2007 provided an opportunity for vendors to peddle their wares and share with us their plans for future products.

As usual, Professor Dr. Hans Meuer and his team from the University of Mannheim put on a fine vendor exhibition, a collection of stimulating presentations and a seamless conference in the beautiful historical city of Dresden. The main sponsor this year was Microsoft, a vendor with an aspiration to capture a big share of the parallel and HPC software market. The Microsoft-sponsored Saxon night at the Albrechtsberg Palace was exquisite.

Burton Smith from Microsoft has been quoted extensively from this conference, and the next two paragraphs highlight Burton’s main ideas for the new parallel languages needed in the multicore world.

In parallel languages there are (at least) two promising approaches: functional programming and atomic memory transactions. Neither is completely satisfactory by itself. Functional programs don’t allow mutable state, and transactional programs implement dependence awkwardly. Database applications show the synergy of the two ideas. SQL is a “mostly functional” language, while transactions allow updates with atomicity and isolation. Many people think functional languages are inefficient. Sisal and NESL are excellent counterexamples of that view as both competed strongly with Fortran on Cray systems. Others believe the same is true of memory transactions, but this remains to be seen as we have only begun to optimise.

We need to support multiple programming styles, functional and transactional, data parallel and task parallel, message passing and shared memory, declarative and imperative, implicit and explicit. We may need several languages to accomplish this, similar to the use of multiple languages today with a helpful language interoperability bridge (e.g. .NET). It is essential that parallelism be exposed to the compiler so that the compiler can adapt it to the target system. It is also essential that locality be exposed to the compiler and for the same reason.

The only other thing I can say is that with the advent of multicore and future manycore chips, Microsoft is aware that producing parallel software has become core for their future business. This means that their entry is for real.

Several hardware vendors highlighted how they intend to deliver the productivity promise and a sustained one petaflop by 2010 and beyond. These included Cray with their Cascade, IBM with their precursor Power6 and the Blue Gene/P product lines leading to upgraded versions for petaflops systems at a later date, as well as other vendors NEC, Fujitsu, Bull and Sun Microsystems with the 32 threads Niagara Chip, and so on. These companies have roadmaps heading for the petaflops milestone.

The conference provided a broad range of talks. The “geeks” embraced the multicore revolution and relished the idea of having manycores and, as Thomas Sterling (LSU) expounded, myriad-cores. Sterling found ample support from John Shalf (LBNL) who betrayed his enthusiasm with an audacious presentation title: “Overturning the Conventional Wisdom for the Multicore Era: Everything you know is wrong.” I am wondering whether John reflected on the semantics of such a sweeping assertion. I leave it to the reader to decide, but as for myself, some of what I know about multicore could probably be wrong, but not everything.

John went on to say that power efficiency motivates manycore design and made the case for using manycores with a simplified instruction set and shorter pipelines. As John observed: “In the old computer world, innovation trickles down from high end computing to the PC and consumer electronics. In the new world, innovation trickles up from the PC and consumer electronics to HPC.”

If only the world were that simple. The real issue is not about old and new, but rather of “good” ideas being adopted and then transferred to a different application domain. For example, in the 1980s PC innovations related to human-machine interfaces were transferred to the high end computers. At that time, the emphasis of high end computers, such as the Cray-1, was on using its scarce resources for numerical calculations, neglecting the human-machine interface. As soon as PCs arrived with easy-to-use interfaces, the high end user community demanded, and soon got, a better deal. Another example is in storage devices, where the developments were powered by the music industry, and the technology was then taken up by the computer industry and HPC.

To be fair, John recognized that latency tolerance and lack of software to exploit multicore are key limiting factors. For me this talk effervesced with enthusiasm (always a good thing) about manycores, but provided sparse practical solutions on how to overcome the difficulties. The multicore era can become a reality, but the pain of this transition needs to be eased for the long suffering application user. In the words of the Bard: “Between the ideal and reality stands the shadow….”

At this point a reality check is in order. The increasing demand for higher performance can no longer be achieved through Moore’s law processor improvements and a one-size-fits-all system mentality. HPC users are no longer getting the performance advances they need from microprocessors. Commercial response to Moore’s law slowdown has been to provide multicore and promise manycore chips. These are general-purpose architectures, optimised for the most widely used applications. But, as it is widely recognized, when scientific computing migrated to commodity platforms, interconnect speed, both in terms of bandwidth and latency, became the limiting factor on application performance and remains a bottleneck to this day.

The new mantra is that although multicore commodity processors will deliver some improvement, exploiting parallelism through a variety of processor technologies using scalar, vector, multithreading and hardware accelerators, e.g., FPGAs, GPUs, etc., creates the greatest opportunity for application acceleration.

Near future supercomputing systems combine multiple processing architectures into a single scalable system. Looking at it from the user point of view, one has the application program, followed by a transparent interface, using libraries, tools, compilers, scheduling system management and a runtime system. The intention is to adapt the system to the application — not the application to the system.

As readers of this publication are aware, there are many challenges to be overcome, not least in memory and network subsystem capabilities as well as in managing software complexity, on the way to the petaflops productivity promise. In current architectures, processors are separated from memory, from which they fetch operand data to feed the arithmetic functional units. This is accentuated by the network latency, when servicing the many thousands of processors required for a petaflops system. Thus, delays tend to accumulate.

In practice, scaling an SMP or cluster to the large numbers of processors required to achieve petaflops is very difficult. Efficiency degrades sharply because of requirements for cache coherence and also from operating system jitters. The key task for system software in heterogeneous systems lies in scheduling strategies and other system functions that maximize the performance extracted from scarce system resources, notably the heterogeneous system’s limited global system bandwidth – in other words, how one minimises and hides latency.

Thomas Sterling gave two talks: one on the HPC achievements and impact since last year and the other on multicore – the next Moore’s Law. He used as an exemplar the IBM Blue Gene/L and its successor the Blue Gene/P, illustrating the emergence of multicore processors on one die used to stem the power consumption explosion. For new systems, the flops/watt metric is expected to become as important as the flops/dollar metric became in the 1990s.

Thomas pointed out that multicore exploits the extra real estate due to increased circuit density and increases functional units per chip (spatial efficiency), which in turn limits energy consumption per operation. Multicore would improve on Moore’s Law in respect to peak performance, but the number of pins would grow much slower. An example is the IBM Cell processor, a 0.25 teraflops chip (9 cores). To address the multicore challenge, one needs more than an SMP on a chip. One needs parcels for latency hiding, destination locale split phase and message driven transaction computing. Latency hiding with parcels will deliver one to two orders of magnitude performance benefits.

Thomas then described work at LSU where his team is currently exploring key challenges of a new class of computer architecture to confront efficiency, scalability, power and reliability. This requires a paradigm shift of execution and programming models. There is a desperate need for intrinsic latency hiding mechanisms to be incorporated in the infrastructure of programming and runtime resource management.

He went on to say: “We are developing a new model for computing called “ParalleX,” extending our earlier work in processor in memory (PIM), and combining these with new work in static dataflow to provide a new class of architecture that adaptively responds to variations in temporal locality. The short-term impact is that the execution model has a spin off of a programming methodology that can operate on conventional architecture. It should improve latency hiding and scalability.”

Jose Duato, from the Technical University of Valencia, gave an excellent keynote presentation describing the pros and cons of systems based on commodity chips, current trends and synergies, feasible future system architectures and identified interconnect as the key subsystem.

He started by explaining that research in academia usually focuses on narrow topics, e.g. processor micro-architecture, memory hierarchy, cache coherence protocols, interconnection networks, and so on. Even when radically new solutions are proposed, e.g. a cost-effective fully adaptive routing algorithm, those solutions only improve a subset of the system and do not eliminate the inefficiencies that are a direct consequence of the system architecture, which may not be globally optimal. This means too many resources (or too much of a power budget) are devoted to improve a component that is not the system bottleneck. A global system view is required even when addressing problems in a particular subsystem.

When looking at computer systems from a global perspective, researchers start (or should start) by looking at application requirements, but there is a fundamental flaw in this approach: Existing applications were designed for existing computer systems and new computer systems are designed to run existing benchmarks faster. In this global optimisation process, practitioners neglect the opportunity to replace the existing programming model and style and may end up proposing techniques to recover parallelism that has been lost due to previous optimisations.

In some proposed solutions, applications are written in such a way that most parallelism is lost, having to use speculation techniques to recover it. The proposed techniques tend to increase power consumption. A more efficient approach is to redesign the inner program loops, transmitting each value after computing it by specifying it in the program and letting an optimised implementation of MPI to decide whether each value should be immediately transmitted or should be packed together with other values into a single message to reduce the communication start-up overhead. The correct solution is a truly global view.

The heat dissipation wall forced microprocessor manufacturers to move to multicore chips needing much less power consumption for the same peak computing power. Manufacturers are increasing the number of cores per chip but at a slower frequency rate. At least one core should be as fast as the fastest core in the previous generation chip. Many users do not know what to do with additional cores (beyond running anti-virus and firewall). The current trend will soon face the memory bandwidth wall problem on how to feed the cores. This is further aggravated when running applications that do not share data (e.g. multiple virtual servers) and/or when including the graphics accelerator on the same chip.

Necessity is the mother of invention. Accelerators, which can execute repetitive compute-intensive functions much faster than host processors, are being utilised. Different flavours — GPU-based accelerators, FPGA-based accelerators, DSP-based accelerators — are available, but these are not good for code fragments with high memory bandwidth requirements unless the accelerator implements a large and fast local memory (e.g., graphics cards). They are nevertheless becoming popular due to the availability of compilers and programming tools.

With multicore chips, it is no longer possible to exploit parallelism in an automatic mode. Applications need to be multithreaded. It has been quite easy to convince desktop and laptop users that a second core is beneficial even for running single-threaded applications. Perhaps one can run anti-virus and firewall on the second core, but what does one do with four cores?

Simpler programming models are likely to become much more widespread than more sophisticated ones (e.g., shared memory versus message passing). Not hiding architectural details from application developers may make it more difficult to accept a given architecture. Observe the XBox 360 versus PlayStation 3 battle.

Looking at synergies, mass-market applications that require more computing power (e.g., video games) are forcing application developers toward parallel programming. The number of programmers able to develop multithreaded applications is likely to increase at a fast pace during the next few years. Most of these application developers will become familiar with shared-memory models, but not so much with message passing. This trend is likely to make parallel programming more popular, but shared-memory machines are likely to be preferred over current clusters.

Multicore processors have become commodity components, while chip architecture and system architecture have become much more relevant. Many system characteristics need to be scrutinized: core count; chip interconnect type; core type (homogeneous versus heterogeneous); cache hierarchy and design; pin bandwidth; and memory organization (local versus shared, hardware coherence versus software coherence versus coherence domains versus non-coherent). There’s also the issue of network interfaces and where we attach them. As for storage, we now need to choose from traditional hard disks, solid-state disks and non-volatile memory (i.e., FLASH).

As for memory subsystems, large-scale cache coherent NUMA architectures are based on the idea of using physically distributed, logically shared memory. Caches are mandatory to deliver good performance and keeping them coherent in large systems is a nightmare. Cache coherent NUMA architectures are very expensive and not very scalable. Non-coherent shared-memory architectures as well as shared-memory architectures with multiple coherence domains are feasible. Accelerators can play a vital role in increasing computing power and reducing power consumption. A feasible, scalable, flexible and cost-effective approach for future systems is a global address space, not necessarily coherent, where each page has configurable semantics (coherent, non-coherent, transactional).

The most difficult task when developing multithreaded applications using transactional memory is making sure that the program works (e.g., deadlocks may occur when combining correct code fragments). Transactional memory is a concurrency control mechanism for controlling access to shared memory. A transaction is a piece of code that executes a series of reads and writes to shared memory, which logically occur at a single instant in time, and are typically implemented in a lock-free way.

Transactional memory is optimistic: every thread completes its modifications to shared memory without regard for what other threads might be doing, recording every read and write, which are validated in the commit stage. Implementing part of the system memory as transactional memory could be the solution for storing shared data in parallel applications while simplifying programming.

To recap. The use of commodity components has been the key to delivering tremendous affordable computing power. Architectures based on current commodity components have intrinsic limitations that prevent efficient exploitation of parallelism. Current multicore trends will force the rapid expansion of shared-memory parallel programming. The computer industry should use this unique opportunity to design scalable, cost-effective shared-memory architectures.

Low-latency, high-bandwidth interconnects are the key subsystem to enable the design of scalable shared-memory architectures. Several efficient solutions exist for different subsystems including interconnects. What remains to be done is finding the right combination of components that will enable those high performance architectures to be implemented at low cost.

As Martin Luther King said: “I have a dream.” In my vision of the future, architectures will be a comprised of a series of standard modules, such as compute cores, defining coarse system functions, and memories, including transactional memory, along with their respective interconnects and inter-chip networks. The compute cores will be heterogeneous, including blank pieces of silicon, field programmable and populated by processor designs taken from a library on demand, verified to optimally match the user application. The system will have globally addressable memory, but not necessarily globally coherent. A new standard parallel programming paradigm, functional and transactional but at a higher abstraction, will be universally adopted. The age of the “soft computer” will then be upon us.

I leave you with an Albert Einstein maxim on simplification: “All should be as simple as possible, but not simpler.”

—–

Brands and names are the property of their respective owners. Copyright (c) Christopher Lazou, HiPerCom Consultants, Ltd., UK. July 2007.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft, Nvidia Launch Cloud HPC

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an Infiniband network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the compa Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Governm Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This