A Half-Year Retrospective

By Michael Feldman

July 6, 2007

Now that we’re at the halfway mark for 2007, I thought I’d take a look back at the first six months of the year and try to highlight the most significant HPC stories of the year. In chronological order:

1. Less than four weeks into the new year, Sun and Intel became best buddies, announcing that there would be a broad partnership between the two companies. Up until that point, Sun used only AMD technology in their x86-based boxes. Under the new arrangement, Sun will add Intel Xeon processors to their workstations and servers, alongside their Opteron-based offerings. Intel will support and distribute Solaris, Sun’s home-grown OS. The Sun-Intel partnership seemed to foreshadow AMD’s 2007 woes that accumulated as the year wore on.

2. Also in January, Intel demonstrated its “breakthrough” 45nm process technology, announcing an aggressive schedule to roll-out commercial products based on the new process. The first shipments of 45nm chips may come as early as Q4 2007. The new process technology uses hafnium to dramatically reduce electron leakage, an increasingly annoying problem as semiconductor process sizes have shrunk. IBM also announced plans to move to 45nm, but their plans to get the technology into production seem less aggressive than Intel’s. The real loser here is AMD, who is still in the process of moving their competing x86 products onto the 65nm process.

3. In February, a Canadian tech startup called D-Wave demonstrated a prototype of a commercial quantum computer years ahead of what most people thought would be possible. The 16-qubit prototype didn’t have the power to challenge convential high-end computing, nor did the demonstration convince skeptics that “true” quantum computing was actually taking place. Larger systems will be needed to do this. A 32-qubit D-Wave machine is scheduled to be available at the end of the year.

4. The most interesting high performance interconnect story of the half-year came from Woven Systems. They’ve developed a 144-port 10 GbE switch designed to create a lossless Ethernet fabric with latency comparable to InfiniBand. According to Woven, this is achieved at one-fifth the cost of other 10 GbE solutions. The switch does dynamic load balancing at the hardware level (in a custom ASIC) to provide high levels of performance. Woven predicted general availability for their switch in Q3 of this year.

5. At the Intel Developer Forum (IDF) in April, Intel finally revealed its intent to develop the much-rumored GPU-like Larrabee product line. No details of the technology were revealed at IDF, but Intel characterized Larrabee as a “highly parallel, IA-based programmable architecture” designed to scale to teraflop-level performance. While not calling this manycore architecture a GPU, Intel appears to be aiming Larrabee products at both visualization applications and vector processing/scientific computing.

6. While multicore/manycore is the current megatrend in computing, researchers at the University of Texas think there’s a lot to be gained from instruction-level concurrency. In May, after years of research and development, the Texas team released a prototype of their TRIPS (Tera-op Reliable Intelligently adaptive Processing Systems) microprocessor. The chip is meant to dynamically adapt to the type of application being run, whether or not the particular workload contains inherent parallelism. At a time when everyone is singing the same multicore tune, it’s refreshing to hear a different song. The TRIPS prototype demonstration was meant to solicit interest from commercial chipmakers. Anyone out there willing to tackle a new instruction set?

7. In early June, PeakStream was acquired by Google. PeakStream was one of two startup companies that offered a high-level stream computing development platform for multicore architectures. The other one, RapidMind Inc., had just launched its competing offering two weeks prior to the PeakStream acquisition. Both products offered a software development environment for developing stream computing applications for x86, Cell and GPU platforms. There was a wide variety of speculation on what Google intended to do with PeakStream technology (I offered my own two cents).

8. Later in June, NVIDIA launched Tesla, a GPU product line targeted specificially for the high performance technical computing market. The first Tesla products were essentially repackaged Quadro GPUs targeted for HPC workstations and servers. The company’s CUDA C compiler environment provides programmers with access to the general purpose computing features of the GPU hardware, giving NVIDIA a complete end-to-end offering for high performance computing. By the end of the year, NVIDIA plans to implement double precision floating point in the new Tesla offerings.

9. June was a busy month. At the International Supercomputing Conference (ISC) in Germany, IBM previewed its Blue Gene/L successor — Blue Gene/P. This second-generation architecture is designed to be able to scale well into petaflop territory. Using quad-core PowerPC chips, bumping the speed in the CPUs, and generally improving the system interconnect, the new architecture more than doubles the compute power of the Blue Gene/L generation. The first deployment of a Blue Gene/P will be a sub-petaflop system at Argonne National Laboratory this fall.

10. A plethora of other HPC industry news came out at ISC. Maybe the most significant was Sun Microsystems’s formal return to the capability supercomputing arena. The company announced its Sun Constellation product line, which, like Blue Gene/P, is capable of petaflop levels of performance. Unlike Cray or IBM, who use proprietary system interconnects to link processors together, Sun is using a souped-up InfiniBand switch and a simplified interconnect topology to connect Sun Blade 6000 servers. The servers themselves can be based on AMD Opterons, Intel Xeons or Sun’s T1 processors. Essentially Sun is trying to do what many thought was impractical — scale a cluster into a petaflop machine. The first Sun Constellation deployment will be at the Texas Advanced Computing Center by the end of this year. At around 500 peak teraflops, that machine will vie for the number one spot on the Top500 list.

By the way, over at Tabor Research, Addison Snell offers his top three picks of the most important HPC announcements leading up to (and during) last week’s International Supercomputing Conference. So for an analyst’s perspective of what’s important in HPC, check out the Tabor Research blog.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This