A Half-Year Retrospective

By Michael Feldman

July 6, 2007

Now that we’re at the halfway mark for 2007, I thought I’d take a look back at the first six months of the year and try to highlight the most significant HPC stories of the year. In chronological order:

1. Less than four weeks into the new year, Sun and Intel became best buddies, announcing that there would be a broad partnership between the two companies. Up until that point, Sun used only AMD technology in their x86-based boxes. Under the new arrangement, Sun will add Intel Xeon processors to their workstations and servers, alongside their Opteron-based offerings. Intel will support and distribute Solaris, Sun’s home-grown OS. The Sun-Intel partnership seemed to foreshadow AMD’s 2007 woes that accumulated as the year wore on.

2. Also in January, Intel demonstrated its “breakthrough” 45nm process technology, announcing an aggressive schedule to roll-out commercial products based on the new process. The first shipments of 45nm chips may come as early as Q4 2007. The new process technology uses hafnium to dramatically reduce electron leakage, an increasingly annoying problem as semiconductor process sizes have shrunk. IBM also announced plans to move to 45nm, but their plans to get the technology into production seem less aggressive than Intel’s. The real loser here is AMD, who is still in the process of moving their competing x86 products onto the 65nm process.

3. In February, a Canadian tech startup called D-Wave demonstrated a prototype of a commercial quantum computer years ahead of what most people thought would be possible. The 16-qubit prototype didn’t have the power to challenge convential high-end computing, nor did the demonstration convince skeptics that “true” quantum computing was actually taking place. Larger systems will be needed to do this. A 32-qubit D-Wave machine is scheduled to be available at the end of the year.

4. The most interesting high performance interconnect story of the half-year came from Woven Systems. They’ve developed a 144-port 10 GbE switch designed to create a lossless Ethernet fabric with latency comparable to InfiniBand. According to Woven, this is achieved at one-fifth the cost of other 10 GbE solutions. The switch does dynamic load balancing at the hardware level (in a custom ASIC) to provide high levels of performance. Woven predicted general availability for their switch in Q3 of this year.

5. At the Intel Developer Forum (IDF) in April, Intel finally revealed its intent to develop the much-rumored GPU-like Larrabee product line. No details of the technology were revealed at IDF, but Intel characterized Larrabee as a “highly parallel, IA-based programmable architecture” designed to scale to teraflop-level performance. While not calling this manycore architecture a GPU, Intel appears to be aiming Larrabee products at both visualization applications and vector processing/scientific computing.

6. While multicore/manycore is the current megatrend in computing, researchers at the University of Texas think there’s a lot to be gained from instruction-level concurrency. In May, after years of research and development, the Texas team released a prototype of their TRIPS (Tera-op Reliable Intelligently adaptive Processing Systems) microprocessor. The chip is meant to dynamically adapt to the type of application being run, whether or not the particular workload contains inherent parallelism. At a time when everyone is singing the same multicore tune, it’s refreshing to hear a different song. The TRIPS prototype demonstration was meant to solicit interest from commercial chipmakers. Anyone out there willing to tackle a new instruction set?

7. In early June, PeakStream was acquired by Google. PeakStream was one of two startup companies that offered a high-level stream computing development platform for multicore architectures. The other one, RapidMind Inc., had just launched its competing offering two weeks prior to the PeakStream acquisition. Both products offered a software development environment for developing stream computing applications for x86, Cell and GPU platforms. There was a wide variety of speculation on what Google intended to do with PeakStream technology (I offered my own two cents).

8. Later in June, NVIDIA launched Tesla, a GPU product line targeted specificially for the high performance technical computing market. The first Tesla products were essentially repackaged Quadro GPUs targeted for HPC workstations and servers. The company’s CUDA C compiler environment provides programmers with access to the general purpose computing features of the GPU hardware, giving NVIDIA a complete end-to-end offering for high performance computing. By the end of the year, NVIDIA plans to implement double precision floating point in the new Tesla offerings.

9. June was a busy month. At the International Supercomputing Conference (ISC) in Germany, IBM previewed its Blue Gene/L successor — Blue Gene/P. This second-generation architecture is designed to be able to scale well into petaflop territory. Using quad-core PowerPC chips, bumping the speed in the CPUs, and generally improving the system interconnect, the new architecture more than doubles the compute power of the Blue Gene/L generation. The first deployment of a Blue Gene/P will be a sub-petaflop system at Argonne National Laboratory this fall.

10. A plethora of other HPC industry news came out at ISC. Maybe the most significant was Sun Microsystems’s formal return to the capability supercomputing arena. The company announced its Sun Constellation product line, which, like Blue Gene/P, is capable of petaflop levels of performance. Unlike Cray or IBM, who use proprietary system interconnects to link processors together, Sun is using a souped-up InfiniBand switch and a simplified interconnect topology to connect Sun Blade 6000 servers. The servers themselves can be based on AMD Opterons, Intel Xeons or Sun’s T1 processors. Essentially Sun is trying to do what many thought was impractical — scale a cluster into a petaflop machine. The first Sun Constellation deployment will be at the Texas Advanced Computing Center by the end of this year. At around 500 peak teraflops, that machine will vie for the number one spot on the Top500 list.

By the way, over at Tabor Research, Addison Snell offers his top three picks of the most important HPC announcements leading up to (and during) last week’s International Supercomputing Conference. So for an analyst’s perspective of what’s important in HPC, check out the Tabor Research blog.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This