ORNL Closes In On Petascale Computing

By Nicole Hemsoth

July 13, 2007

As a Department of Energy leadership computing facility, Oak Ridge National Laboratory (ORNL) employs some of some of the most powerful supercomputers on the planet. Buddy Bland, project director of ORNL’s Leadership Computing Facility, discusses the challenges of computing at very large scale — with “peta” around the corner and “exa” on the distant horizon.

HPCwire: Oak Ridge’s “Jaguar” system is now number two on the Top500 list, compared to number ten last November. That’s a big performance leap. How is this helping your users?

Bland: The huge leap in “Jaguar’s” effective computing power is giving scientists the tools they need to solve really big, important problems — scientifically important problems and, through the industrial portion of the DOE INCITE program, economically important problems as well. That’s the whole reason for the leadership computing initiative that Dr. Orbach put forward and that ORNL won in 2004.

Climate scientists are using the system to develop the next generation of the Community Climate System Model (CCSM). Peter Gent of NCAR [National Center for Atmospheric Research], who is chair of the CCSM Scientific Steering Committee, said that the performance of CCSM on Jaguar was “out of our dreams” at a blistering 40 simulated years per day. He said recent improvement to the simulation of the El Niño/Southern Oscillation in CCSM is the most impressive new result in ten years.

Fusion researchers are using “Jaguar” to simulate the multinational ITER fusion reactor, a device that will bring the world closer to a clean, abundant energy source by heating an ionized gas ten times hotter than the sun. The AORSA fusion application has achieved 87.5 teraflops on “Jaguar” for the dominant computational kernel. This is 74 percent of the system’s theoretical peak.

On the industrial side, a team led by Jihui Yang of General Motors is using the system to perform first-principles calculations of thermoelectric materials capable of turning waste heat into electricity. The team’s goal is to help automakers capture that 60 percent of the energy generated by an automobile’s engine that is currently lost through waste heat and to use it to boost fuel economy. These calculations would not have been possible if the scientists had not had access to the leadership computing resources of the Energy Department. This is another great example of how computational simulation can contribute to scientific advances and energy security. There are many more examples.

HPCwire: You serve a relatively small number of users who have really big problems, meaning codes that exploit a large fraction of your systems. What special things do you do to serve these high-end users?

Bland: It takes a lot of personal attention. Computers at the scale of the top five of the Top500 list are so much larger than what most people have ever had access to. To increase the ease of use and productivity, we established our Scientific Computing Group, led by Dr. Ricky Kendall. Members of this group act as liaisons between the computer center and the computational projects. They have Ph.D.’s in relevant scientific disciplines and many years of experience working with high-performance computers. They help users port, tune and optimize their codes. This includes and often requires modification, augmentation or a change of algorithms and implementations. Only a modest number of existing codes have parallelized the I/O, so getting data in and out of the computers can be a serious issue. Providing this kind of expert assistance to each code team and working closely with them is one of the real keys to making these leadership-class machines productive.

Equally important is our User Assistance and Outreach Group, led by Dr. Julia White. This group is intimately familiar with the day-to-day functioning of the machines. Group members help our users fix broken code and ensure the codes are behaving as intended. These two groups and their dedication to delivering successful science for LCF users are especially important because state-of-the-art supercomputers, like all high-performance machines, can be very unforgiving.

HPCwire: There’s a Cray Center of Excellence at ORNL. What role does that play?

Bland: Cray’s John Levesque heads this center, which Cray established in collaboration with ORNL to accomplish several things. The center’s most important function is working closely with the users and with Ricky Kendall’s group to port, tune and optimize the codes, and to understand the algorithms. John Levesque and his colleagues take what they learn from this process back to Cray’s computer designers, who use it to design future-generation computers that can run these problems even faster, along with solving new and different problems. The goal is to create a better mapping between the algorithms and the machines and reduce overall time to solution. Another important contributor is Luis DeRose, Cray’s head of tools who’s also on the staff of the Center of Excellence. He studies how well the Cray tools work and what others tools are needed by our user community. Cray acts as a true partner, not just a manufacturer of the computers.

HPCwire: What are your current plans for getting to a peak petaflop?

Bland: Cray’s code name for the follow-on to the XT series is “Baker.” We have a contract for a “Baker” system, which is expected in late 2008 or early 2009. It will be first in a series of Cray machines based on technology that will go into the “Cascade” system Cray is developing under the DARPA HPCS [High Productivity Computing Systems] program. “Baker” will be a peak petaflops machine.

HPCwire: Rumor has it that ORNL surveyed its user community to identify which codes would be the best candidates for 250 teraflops and 1 petaflops performance. Can you say more about this?

Bland: One important thing in bringing these machines to readiness is that any time a very large machine comes on line, it takes some time from delivery through acceptance. During this time, we run a suite of applications to understand how well the machine is working. But we don’t only want to run problems we already know the answers to. We also need a suite of applications we can use to accomplish new science. We are working with users in the DOE and other agencies through the INCITE process to identify applications that are early candidates for these machines and that have the potential to accomplish groundbreaking science. We are seeing which applications have technical readiness and need access to these large machines. Technical readiness means that the algorithms are likely to work at tens or hundreds of thousands of cores. We have a number of applications today that are exploiting all 23,000 “Jaguar” cores with good scaling. There’s a reasonable chance these will run well on even larger machines.

HPCwire: Will some of these candidate codes come from industry?

Bland: DOE’s INCITE program provides access to leadership-class machines for users from government, academia and industry. Codes from all of these areas will be eligible.

HPCwire: In your opinion, what are the biggest challenges to achieving sustained petaflops performance on real-world applications?

Bland: An incredible amount of parallelism needs to be found and exploited to effectively use sustained petaflops machines with tens or hundreds of thousands of cores. Combining MPI with OpenMP on an SMP machine involves a relatively low level of programming. The real challenge is finding appropriate programming models, such as the HPCS languages or others. Another major problem is going to be fault tolerance at this scale. Some applications will need weeks or more to run. We need a way to generate correct answers even when some components are not fully functional. This is a major research topic today. The DOE is investing a lot in research on fault-tolerant computing.

HPCwire: Your “Jaguar” system is an Opteron-based Cray XT3/XT4, and your “Phoenix” system is a Cray X1E vector machine. How is this hybrid approach working?

Bland: The combination works very well. “Phoenix” is relatively small compared to machines at the top of the Top500, although it’s in the top 100. Its vector processors run certain applications exceptionally well, including some fusion calculations that exploit the memory bandwidth of this machine, and some climate modeling codes. There’s a need to maintain vector machines. Cray’s strategy of integrating many different processor types in a common infrastructure — multithreaded, vector, maybe also special purpose as well as scalar processors — is interesting. We’ll be working closely with Cray on how best to apply hybrid computers like this to scientific applications.

HPCwire: Have you encountered any surprises in running codes or benchmarks at very large scale?

Bland: Running Linpack to get to number two on the Top500 list took approximately 18 hours. The first time we ran it, we got a residual number that was very large. We had seen problems before with running Linpack and suspected a hardware problem. We spent a couple of days trying to diagnose this and found we had broken the Linpack benchmark code. We had exceeded the periodicity of the 32-bit random number generator in Linpack. It wasn’t a big deal for Linpack, in the sense that Jack Dongarra is modifying the sample code to correct this. What happened is more important as a reminder that when you’re dealing with very large calculations, it’s critically important to pay close attention to the mathematical techniques you use, to make sure you end up with mathematical results that are reasonable.

HPCwire: In sum, how is ORNL’s evolution into a leadership-class computing facility working out in practice?

Bland: Very well. The work with the Scientific Computing Group has turned out to be a critical aspect of being able to use these very large machines and allocations. Our partnership with DOE for INCITE has been very effective. Ray Orbach started this at NERSC and it worked well, but the demand for time has always exceeded the supply, so creating the DOE leadership centers and making these machines available to both DOE and non-DOE users has been a very good thing. The quality of the machines is high, and the applications are running well and getting great results.

HPCwire: What’s next for ORNL?

Bland: The DOE Office of Science recently held a series of workshops on exascale computing at ORNL, Argonne and Berkeley. We’re all trying to understand the challenges and the issues. We’re very interested in how to continue this exploration.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This