What the Top500 Doesn’t Tell Us

By Michael Feldman

July 13, 2007

I’m not a big fan of the Top500 — the list that ranks the 500 fastest supercomputers in the world. As most readers of this publication are aware, the rankings are based on the Linpack benchmark, which measures how well a system can perform a specific set of linear algebra calculations. As such, the benchmark provides some notion of how much floating point performance is theoretically possible from a given system. But since most HPC applications exhibit much more complex behavior than Linpack, the benchmark isn’t that useful in determining real-world performance.

The most interesting aspect of the list is seeing how the different technologies and companies represented in the Top500 are trending, and this is one of the major reasons the mainstream IT press follows the semi-annual rankings. And of course, everyone loves a competition. As for me, I’d be interested in seeing a few other tidbits of information in the list.

For example, how would the Top500 systems fare on the HPC challenge (HPCC) benchmarks? The HPCC suite consists of seven codes (including Linpack) that measure a variety of performance characteristics, including memory bandwidth, system network communication capacity, and random memory update performance. Because of this, HPCC provides a more balanced view of how well a system might perform with real applications.

There are currently 134 HPC systems that have run at least some of the HPC challenge benchmarks; the results are listed on the HPCC website at http://icl.cs.utk.edu/hpcc/hpcc_results.cgi. As one might suspect, the more traditional cluster systems don’t fare as well on some of the tests, especially the ones that stress inter-processor communication. Here the proprietary system interconnects of the high-end IBM and Cray machines show much better performance than their cluster counterparts. For the past two years at the Supercomputing Conference & Expo, the HPPC competition has awarded the top three systems for each benchmark category. During its short history, top honors have gone to IBM Blue Gene and Cray XT3 systems, in that order.

Another useful piece of information is the performance per watt metric. If the Top500 organizers required that system power usage be specified with each submission, it would be a simple exercise to calculate Linpack performance per watt for a given machine. The HPCC folks could do the same. The Green500 website, maintained by Dr. Wu-chun Feng and Dr. Kirk W. Cameron at Virginia Tech, is attempting to fill that gap by encouraging HPC installations to provide this type of information. So far they have eight machines ranked. At 112.24 megaflops/watt, IBM Blue Gene/L currently holds the top spot as the most energy efficient system (for Linpack). To see the whole list, visit http://www.green500.org/Lists.html.

As the petaflop systems start hitting the streets over the next few years, the power issue will loom even larger. IBM claims its new Blue Gene/P architecture will achieve 350 megaflops/watt, an order of magnitude better than traditional cluster systems. If we go by the information provided by Sun Microsystems, their new 500-teraflop “Ranger” Constellation system to be installed at the Texas Advanced Computing Center later this year will achieve a very respectable 210 megaflops/watt. According to the Cray XT4 datasheet, that system achieves between 40 and 70 megaflops/watt, depending on the configuration (I’m assuming the information is only applicable to dual-core Opteron configurations.)

Maybe the most important information missing from the Top500 list is the context of those systems within the larger HPC community. Specifically, how much high performance computing is taking place in the Top500 versus all the other HPC systems out there — what I’ll call the “Sub500.” Over the past year, the aggregate capacity of the 500 fastest machines almost doubled, going from 2.79 petaflops to 4.92 petaflops. So how much HPC capacity is in the Sub500? And maybe more importantly, did the Sub500 capacity double over the past year as well?

The answer to the last question would tell us if HPC use is getting broader or just deeper. If the former is true, that is, if Sub500 users at least doubled their HPC capacity last year, then true democratization is occurring. But if it’s a matter of the rich getting richer, that would suggest that high-end HPC is still in the driver’s seat. The more complex answer is that both trends are occurring in tandem, but at any given time one is dominant. But which one?

There is a sense that the “center of mass” for high performance computing is moving downward. According to Chris Willard, senior research consultant with Tabor Research, “[C]apacity growth at the low end of the market is driven by growth in the number and sophistication of users. There is a lot of room for growth here both as more companies come on board, and as recent entries move from proof of concept to production computing. In contrast, the high-end users are pretty much a fixed market — the world is willing to spend roughly $1 billion a year on top-of-the-line supercomputers and that has not changed over the last two or three decades.”

There’s little doubt that overall HPC capacity is growing. Over the past few years, high performance and technical computing revenues have increased at a rate exceeding 20 percent (while price/performance continues to improve). And if you can believe IDC, this growth is essentially taking place at the low end of the market, driven by the demand for small- and medium-sized cluster systems. But the standard method of data collection for this kind of analysis may tend to favor the low end of the market. For example, some vendors only report computer node sales, not cluster or systems sales. And there’s no way of telling how nodes are configured after purchase. They may be used as standalone servers or be incorporated into larger systems. To the observer, they all look like low-end systems.

Even assuming the market growth is almost exclusively occurring in the Sub500, I’m not convinced that gains in performance capacity are following the same pattern. Unfortunately, a detailed breakdown of the numbers is hard to come by. As noted above, even simple data collection methodologies have their limitations. And maintaining a list of all HPC systems and computer nodes shipped over the past several years, calculating the capacity of each one, and then determining which machines are in use and which are retired, would be almost impossible. So I’m left wondering.

If the proponents of massive-scale computing are correct, big systems will inherit the IT landscape. In this scenario, computational power will consolidate into larger, fewer machines and most computing will be accessed as a service via a utility model (a la Sun Microsystems’ Network.com). Some have even suggested that a handful of computers may be all that’s required for the entire world’s computing needs. If that’s our future, then at some point the Top500 list will look pretty sparse.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This