What the Top500 Doesn’t Tell Us

By Michael Feldman

July 13, 2007

I’m not a big fan of the Top500 — the list that ranks the 500 fastest supercomputers in the world. As most readers of this publication are aware, the rankings are based on the Linpack benchmark, which measures how well a system can perform a specific set of linear algebra calculations. As such, the benchmark provides some notion of how much floating point performance is theoretically possible from a given system. But since most HPC applications exhibit much more complex behavior than Linpack, the benchmark isn’t that useful in determining real-world performance.

The most interesting aspect of the list is seeing how the different technologies and companies represented in the Top500 are trending, and this is one of the major reasons the mainstream IT press follows the semi-annual rankings. And of course, everyone loves a competition. As for me, I’d be interested in seeing a few other tidbits of information in the list.

For example, how would the Top500 systems fare on the HPC challenge (HPCC) benchmarks? The HPCC suite consists of seven codes (including Linpack) that measure a variety of performance characteristics, including memory bandwidth, system network communication capacity, and random memory update performance. Because of this, HPCC provides a more balanced view of how well a system might perform with real applications.

There are currently 134 HPC systems that have run at least some of the HPC challenge benchmarks; the results are listed on the HPCC website at http://icl.cs.utk.edu/hpcc/hpcc_results.cgi. As one might suspect, the more traditional cluster systems don’t fare as well on some of the tests, especially the ones that stress inter-processor communication. Here the proprietary system interconnects of the high-end IBM and Cray machines show much better performance than their cluster counterparts. For the past two years at the Supercomputing Conference & Expo, the HPPC competition has awarded the top three systems for each benchmark category. During its short history, top honors have gone to IBM Blue Gene and Cray XT3 systems, in that order.

Another useful piece of information is the performance per watt metric. If the Top500 organizers required that system power usage be specified with each submission, it would be a simple exercise to calculate Linpack performance per watt for a given machine. The HPCC folks could do the same. The Green500 website, maintained by Dr. Wu-chun Feng and Dr. Kirk W. Cameron at Virginia Tech, is attempting to fill that gap by encouraging HPC installations to provide this type of information. So far they have eight machines ranked. At 112.24 megaflops/watt, IBM Blue Gene/L currently holds the top spot as the most energy efficient system (for Linpack). To see the whole list, visit http://www.green500.org/Lists.html.

As the petaflop systems start hitting the streets over the next few years, the power issue will loom even larger. IBM claims its new Blue Gene/P architecture will achieve 350 megaflops/watt, an order of magnitude better than traditional cluster systems. If we go by the information provided by Sun Microsystems, their new 500-teraflop “Ranger” Constellation system to be installed at the Texas Advanced Computing Center later this year will achieve a very respectable 210 megaflops/watt. According to the Cray XT4 datasheet, that system achieves between 40 and 70 megaflops/watt, depending on the configuration (I’m assuming the information is only applicable to dual-core Opteron configurations.)

Maybe the most important information missing from the Top500 list is the context of those systems within the larger HPC community. Specifically, how much high performance computing is taking place in the Top500 versus all the other HPC systems out there — what I’ll call the “Sub500.” Over the past year, the aggregate capacity of the 500 fastest machines almost doubled, going from 2.79 petaflops to 4.92 petaflops. So how much HPC capacity is in the Sub500? And maybe more importantly, did the Sub500 capacity double over the past year as well?

The answer to the last question would tell us if HPC use is getting broader or just deeper. If the former is true, that is, if Sub500 users at least doubled their HPC capacity last year, then true democratization is occurring. But if it’s a matter of the rich getting richer, that would suggest that high-end HPC is still in the driver’s seat. The more complex answer is that both trends are occurring in tandem, but at any given time one is dominant. But which one?

There is a sense that the “center of mass” for high performance computing is moving downward. According to Chris Willard, senior research consultant with Tabor Research, “[C]apacity growth at the low end of the market is driven by growth in the number and sophistication of users. There is a lot of room for growth here both as more companies come on board, and as recent entries move from proof of concept to production computing. In contrast, the high-end users are pretty much a fixed market — the world is willing to spend roughly $1 billion a year on top-of-the-line supercomputers and that has not changed over the last two or three decades.”

There’s little doubt that overall HPC capacity is growing. Over the past few years, high performance and technical computing revenues have increased at a rate exceeding 20 percent (while price/performance continues to improve). And if you can believe IDC, this growth is essentially taking place at the low end of the market, driven by the demand for small- and medium-sized cluster systems. But the standard method of data collection for this kind of analysis may tend to favor the low end of the market. For example, some vendors only report computer node sales, not cluster or systems sales. And there’s no way of telling how nodes are configured after purchase. They may be used as standalone servers or be incorporated into larger systems. To the observer, they all look like low-end systems.

Even assuming the market growth is almost exclusively occurring in the Sub500, I’m not convinced that gains in performance capacity are following the same pattern. Unfortunately, a detailed breakdown of the numbers is hard to come by. As noted above, even simple data collection methodologies have their limitations. And maintaining a list of all HPC systems and computer nodes shipped over the past several years, calculating the capacity of each one, and then determining which machines are in use and which are retired, would be almost impossible. So I’m left wondering.

If the proponents of massive-scale computing are correct, big systems will inherit the IT landscape. In this scenario, computational power will consolidate into larger, fewer machines and most computing will be accessed as a service via a utility model (a la Sun Microsystems’ Network.com). Some have even suggested that a handful of computers may be all that’s required for the entire world’s computing needs. If that’s our future, then at some point the Top500 list will look pretty sparse.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire