Because It’s There?

By Michael Feldman

July 20, 2007

I recently got a chance to talk with Ed Turkel, manager of HP’s Product and Technology Group for the HPC Division. We mainly discussed HP’s new multicore optimization program, but I was also interested in what he had to say about the company’s aspirations in high-end supercomputing. Although the company essentially matches IBM in HPC revenue, HP doesn’t have a Blue Gene type of solution for extreme supercomputing. In the latest Top500 list, HP actually had more entries (203) than any other vendor, but didn’t have a single system in the top 50.

That particular statistic is about to change. HP recently revealed that a 182-teraflop system has been purchased by an undisclosed Swedish government agency. The Swedish machine is a cluster comprised of 2,148 dual-processor, ProLiant C-class Xeon-based blades. Turkel says HP is hoping to get that system on the November Top500 list, where it would almost certainly break into the top 10. Another Swedish system, this one a 60-teraflop machine for the country’s National Supercomputer Centre (NSC), should also be deployed in time for the November rankings.

According to Turkel, HP is interested in the high end of the HPC market, but only where they can leverage their enterprise HPC offerings into something bigger. “We perhaps haven’t been as willing as some of our competitors to — if you will — give away systems,” explained Turkel. “But it’s not for lack of interest in the high end. Just the opposite. We’re very interested in deploying some large systems.”

He says they have no intention of developing a proprietary architecture, like Blue Gene, for a high-end offering. But when I asked him if they were going to come out with a distinct product for high-end supercomputing, he hedged a bit, leaving the door open to the possibility.

Scaling commodity clusters into the 100-teraflop-plus realm is now feasible thanks to blade technology, multicore processors and InfiniBand interrconnects. Getting to a petaflop is trickier. Sun Microsystems’ recently announced Constellation supercomputer uses a very dense blade design and a special InfiniBand switch to implement a petaflop-capable architecture. Whether commodity-based systems like this can achieve the real-world application performance of the more highly customized Cray and IBM supers remains to be seen.

But why would anyone want to chase the high end of the supercomputing market anyway? Analysts and vendors both agree that the market is small, essentially stagnant, and is dependent on the buying behavior of a limited set of customers — mostly government organizations. With the exception of Cray, companies that have focused exclusively on this market sector have either failed or were bought out. Cray itself has been swallowed and regurgitated a number of times.

Turkel said that HP’s interest in the high end of the supercomputing market is driven by the company’s strategy of using HPC as a technology incubator. The hope is that the kind of research that brought the world clusters may also come up with something else as widely applicable to the larger IT community. Potentially, that’s worth a lot.

This is the same rationale Sun used when announcing its Constellation supercomputer last month. Talking about the new offering on his blog, Sun CEO Jonathan Schwartz admitted that the high end of supercomputing is “small, esoteric, and has very small profit margins.” But, he explained, that’s not the point:

The academic supercomputing community (there’s that word again) sets the pace for enterprise computing across the world — which has grabbed on to HPC for an array of real world challenges, from virus, disease, and drug discovery, to customer purchase pattern analytics, capital markets trading, energy discovery, dynamic resource management — you name it, it’s one of the fastest growing segments in the marketplace. Proving that what starts in academia, ends up on main street.

But it works both ways. A lot of mainstream computing technology feeds back into supercomputing. And that tends to be the more typical direction of technology flow. Linux, x86 processors and Ethernet are all commodity technologies that were adopted by HPC. Even InfiniBand, which is now making its way from HPC into the enterprise, was originally developed as a general-purpose interconnect. FPGAs and GPUs may be the next examples of commodity technology that moves up the food chain.

And as for those “real world challenges” that Schwartz talks about: most of those applications run on capacity HPC clusters, not capability-class systems.

So why do these companies find the need to play at the far edge of the supercomputing market? Maybe for the same reason people climb Everest — because it’s there. Trying to explain the business case for high-end supercomputing may keep investors calm, but in truth, the motivation to feed profits doesn’t explain all vendor behavior. Sometimes all it takes is a single individual with some lofty goals and a need to succeed.

Seymor Cray wanted to build the fastest computers in the world for the joy of it. When he started Control Data Corporation in 1957, his interest was in building big scientific computers, not in making boatloads of money.

And if you’ve already made a boatload, like billionare Andy Bechtolsheim, Sun Microsystems’ chief architect, your motivations may lie somewhere beyond capitalism. Bechtolsheim is busy pushing Sun to the rarified heights of supercomputing with the aforementioned Constellation system. While that product may not make Sun rich, it makes them a player in the eyes of the supercomputing community. And if that’s enough of an incentive for the folks at HP, we may yet see another company join the petaflop club.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire