HP Looks to Bring HPC Applications Up To Speed

By Michael Feldman

July 20, 2007

In the blitz of news around the International Supercomputing Conference in Dresden last month, HP revealed its multicore optimization program for high performance computing applications. HP, like every HPC computer vendor, is looking for ways to make multicore technology live up to its potential.

While x86 dual-core technology is already pervasive in the industry, quad-core processors are about to become the new standard for server nodes. And the chip vendor roadmaps are pointing to octa-core and beyond.

With AMD’s commitment to deliver their quad-core Opterons next month, both x86 vendors will now be two generations beyond single-core technology. In a sense, the introduction of quad-core technology singals the end of the single-core era. While customers were able to buy single-core x86 Xeon and Opteron processors when dual-core was the latest and greatest, as soon as quad-core becomes the new standard, single-core processors will be phased out. At that point, no one will be able to ignore the reality of “Moore’s Cores.”

Unfortunately, as core counts ratchet up, keeping those additional transistors busy becomes increasingly difficult. And keeping a lid on power use means that for some product lines, processor clock speeds are actually decreasing. So software that does not take advantage of additional cores may actually run slower than it did on older hardware. This puts pressure on manufacturers like HP, who need to offer compelling reasons for customers to upgrade their systems.

Which brings us to HP’s Multicore Optimization Program. According to Ed Turkel, manager of HP’s Product and Technology Group for the HPC Division, the program is designed to bring together a variety of products and technologies for application development on multicore-based systems. These technologies include in-house products, software tools from their partners and other technologies developed in collaboration with some of HP’s customers. Right now the program is more of a framework for what’s to come. Over time, HP expects to announce specific new products to fulfill the program’s objectives and move the HPC ecosystem forward.

Currently, HP relies on its ProLiant DL140 and DL145 servers to form the basis of the the company’s HPC cluster offerings. The DL140 is the Intel Xeon-based system; the DL145 is the AMD Opteron one. HP also offers its own version of MPI (HPMPI). HPMPI specifically optimizes for multicore by implementing CPU binding — mapping new threads to on-processor cores whenever possible, in order to take advantage of cache and the relatively speedy on-chip communication. As core counts rise past two, this feature will become even more crititcal, providing an SMP-like functionality via MPI. Along the same lines, HP has also provided multicore awareness in application scheduling. The company has tweaked Lawrence Livermore’s open source Simple Linux Utility for Resource Management (SLURM) so that when processes are scheduled, they are preferentially placed on the same processor.

HP relies mostly on their partners to provide HPC software development tools. Intel and The Portland Group offer x86 compilers, while TotalView Technologies provides debugging and analysis tools. At this point, HP is only a reseller of this software, but a complete, integrated tool suite that incorporates third-party tools is in the works. According to Turkel, HP expects to announce a product sometime around the 2007 Supercomputing Conference (SC07) in November. He says they are especially interested in offering performance characterization and optimization tools. The company has developed some of this technology in-house and has been running trials with a few select customers. HP also has their own implementation of Unified Parallel C (UPC) that they would like to see become a more important platform for HPC development.

The end game for all this is better multicore performance on the applications themselves. Today most HPC software is cluster-aware, but many HPC codes — some 20 or 30 years old — are still in single-core mode. When users ugrade their systems with new multicore hardware, they expect to see their application run faster. This is what happened in the past when increases in processor clock speeds automatically sped up the software. But to get that same performance boost on multicore processors requires that the applications become parallelized.

That creates some cultural challenges for the independent software vendors (ISVs). In general, customers expect better application performance from every software upgrade, but don’t necessarily expect to pay for the privilege. They are much more willing to pay for additional features. In the past this has encouraged ISVs to focus their development resources on feature enhancements rather than performance boosting.

Turkel says that because of customer expectations, he believes application providers are going to be under more pressure to focus on performance than they have been in the past. And HP intends to ease this transition by helping ISVs make their applications multicore-capable. Turkel notes that because HP has such a large share of the HPC cluster market (about a third), they’ve been able to maintain strong relationships with key ISVs and develop a lot of expertise within their ISV engineering team.

One issue that is complicating the transition to multicore software is the way software is purchased. A lot of ISVs license their products based on the number of threads used. Increasing the thread count to take advantage of additional cores makes the software more expensive for end-users. If performance increases are to be realized, ISVs and users are going to be forced to work through the licensing issues.

One possible way to sidestep the multicore licensing issue is with accelerators. General-purpose GPUs, FPGAs, and ClearSpeed boards can be used to provide a lot of computational density with relatively few cores (or at least few licensable units). The challenge here is that heterogenoeous processors add yet another layer of software complexity beyond clustering and scalar multicore. This has not dissuaded HP from getting involved. With both AMD and Intel offering a way to attach third party processors, via Torrenza and Geneseo, respectively, HP has a lot of options on how to exploit heterogeneous processors in their current product lineup.

Regarding accelerators, Turkel says, “[T]here’s been a lot more noise than heat. But we’re seeing the whole ecosystem for accelerators starting to come to fruition…. There is this affinity between multicore and accelerators that is going to become more and more important over time.” He says that HP has been working on acceleration stategies behind the scenes for over a year and we should expect some announcements in this area at SC07.

Right now HP’s multicore optimization program is focused on the company’s HPC offerings. Like other hardware vendors, HP sees high performance computing as a technology incubator for the rest of the IT market. Thus, they consider HPC as a strategic part of their overall product development approach. Technology that started with HPC often gets broadly adopted throughout the rest of the industry. Clusters, high-performance interconnects and workload management tools are all mainstream enterprise technologies today that grew up in HPC.

“Multicore is going to be exactly the same thing,” says Turkel. “Right now, the commerical side hasn’t quite caught on to the the fact that there’s an issue here. But they’re going to hit that wall too.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This