Compilers and More: Productivity and Compilers

By Michael Wolfe

July 27, 2007

Productivity is the new buzzword, and HPC now stands for High Productivity Computing; even HPCwire has adopted this moniker. Can we usefully define productivity? Several metrics have been proposed, most being difficult or impossible to use in any scientific way. The performance metric is typically results per time unit, like flops per second, or runs per day. A productivity metric has a different denominator, usually convertible into dollars (or other currency), such as programmer hours, total system cost, or total power usage.

For example, a simple (and useless) metric, let’s call it M1, is to measure the speedup gained for an application relative to the cost of attaining that speedup. Speedup is measured relative to some base time, and cost can be measured in dollars or hours (for programmer time). If we fix the target system, the hardware cost is constant; software development cost is sometimes normalized across different programmers by counting source lines of code (SLOC), which is coarse but defensible. Using SLOC favors higher level languages, which have shorter programs, though the performance may suffer. The metric M1 is defined as M1=Sp/SLOC where Sp is the speedup, and SLOC is the program length, estimating the programming effort. One study used this metric and indeed found that sequential MATLAB competes well with parallel C or Fortran; because the MATLAB program is shorter, the productivity metric is high, even though the absolute performance does not measure up to a parallel implementation. On the other hand, high-level parallel array languages like ZPL (http://www.cs.washington.edu/research/zpl) benefit both from low SLOC and high performance, and really shine using this metric.

One problem with M1 as a metric is that it implicitly assumes that you will run your program only once. If you run your program many times, it may be worthwhile to invest a great deal of additional effort for a comparatively small speedup; metric M1 will not show this to be beneficial, but the total time savings may change your mind.

Another problem with M1 is that it can show improved productivity even if the performance decreases. While it is true that most of our standard computing needs are not particularly sensitive to performance (think email), this is not the segment that HPC is intended to address. (If it is, someone let me know. I want out!) Even in the high performance world, we might be willing to accept small performance decreases if the development time and cost are significantly lower. However, rating a slow program as highly productive is counterproductive (pun intended).

Beyond Performance

Yet another problem with M1 is that it ignores additional considerations, such as debugging, portability, performance tuning, and longevity. These all fit into the productivity spectrum somewhere. Let’s discuss each briefly.

Debugging includes finding any programming errors as well as finding algorithmic problems. Interactive debuggers are common, but as we inexorably move into the world of parallel programming, these will have to scale to many simultaneously active threads. Right now the only commonly available scalable parallel debugger is Totalview, which sets the standard. Mature systems with available, supported debuggers are often preferable to a newer system where debugging is limited to print statements.

Portability concerns limit innovation. If we need portability across systems, we are unlikely to adopt or even experiment with a new programming language or library — unless or until it is widely available. Standard Fortran and C address the portability problems quite nicely, and C++ is also relatively portable. A common base library, such as MPI, however difficult to use, is at least widely available, and if necessary, we could port it ourselves.

Another aspect of portability is performance. When we restructure a program for high performance on one machine, we hope and expect the performance improves on other platforms. Programmers who worked on the vector machines in years past found that the effort to restructure their code for one vector machine did, in fact, deliver the corresponding high performance on other vector machines; the machine model was stable and easy to understand. MPI-based programs benefit from this; a parallel MPI program will run more or less as well in parallel on any reasonable MPI implementation.

Longevity concerns also limit innovation. We might be willing to adopt a new programming language, such as Unified Parallel C, for a current research project, but we are unlikely to use it for a product that we expect to live for a decade or more. Regardless of one’s feelings about UPC as a language, we are typically concerned that we will write a program today for which there will be no working compilers or support in ten years. I had the same problems with Java in its early years; programs that I built and used for months would suddenly stop building or working when we upgraded our Java installation.

Improving Productivity

We know what we really mean by high productivity, though it’s hard to quantify: we want to get high performance, but spend less to get it. Usually we mean spending less time in application development. If we go back 50 years, productivity is exactly what the original Fortran developers had in mind: delivering the same performance as machine language, with the lower program development cost of a higher level language. We would do well to be as successful as Fortran. There are no magic bullets here; someone has to do the work. There are four methods to improving productivity.

The first, and the one we’ve depended upon until now for improved performance (and hence productivity), is better hardware; faster processors improve performance. Hardware extraction of parallelism has long been promised (as has software parallelism extraction) and has been quite successful at the microarchitectural level (e.g., pipelined superscalar processors). But the gravy train here has slowed to a crawl. Hardware benefits are going to come with increased on-chip parallelism, not improved speed, and large scale multiprocessor parallelism is still the domain of the programmer.

The second (quite successful) method is faster algorithms. Sparse matrix solvers can be an order of magnitude more efficient than dense solvers when they apply, for instance. No hardware or software mechanism can correct an inappropriate or slow algorithm. Algorithm improvements are often portable across machine architectures and can be recoded in multiple languages, so the benefits are long-lived. So while new algorithm development is quite expensive, it can pay off handsomely.

The third method, often proposed and reinvented, is to use a high performance library for kernel operations. One such early library was STACKLIB, used on the Control Data 6600 and 7600 (ten points if you remember the etymology of the name). This library morphed over time into the BLAS, and now we have LINPACK and LAPACK. The hope is the vendor (or other highly motivated programmer) will optimize the library for each of your target architectures. If there are enough library users, the library author may have enough motivation to eke out the last drop of performance, and your productivity (and performance) increases. In the parallel computing domain, we have had SCALAPACK, and now we have RapidMind and (until recently) PeakStream. In these last two, the product is more than a library, it’s a mechanism for dynamic (run-time) code generation and optimization, something that was just recently an active field of research.

The upside of using a library is that when it works — when the library exists and is optimized on all your platforms — you preserve your programming investment and get high performance. One downside is that you now depend on the library vendor for your performance. At least with open source libraries you can tune the performance yourself if you have to, but then your productivity rating drops.

More importantly, the library interface becomes the vocabulary of a small language embedded in the source language. Your program is written in C or Fortran, but the computation kernel is written in the language of whatever library you use. When you restrict your program to that language, you get the performance you want. If you want to express something that isn’t available in that language, you have to recast it in that language, or work through the performance problems on your own. With the latest incarnations of object-oriented languages, the library interface looks more integrated with the language, complete with error-checking; but you still miss the performance indicators that vector compilers used to give (see below).

The fourth method is to use a better programming language; or, given a language, to use a better compiler. New languages are easy to propose, and we’ve all seen many of them over the decades; serious contenders are less common. Acceptance of a new language requires confidence in its performance, portability, and longevity. We often use High Performance Fortran as an example. It had limited applicability, but had some promise within its intended domain. It had portability, if only because major government contracts required an HPF compiler. However, when immature implementations did not deliver the expected performance, programmers quickly looked in other directions. Perhaps it could have been more successful with less initial hype, allowing more mature implementations and more general programming models to develop. We now see new parallel languages on the horizon, including the parallel CoArray extensions to Fortran (currently on the list for addition to Fortran 2008), Unified Parallel C, and the HPCS language proposals. Let’s see if they can avoid the pitfalls of HPF.

Compilers (or programming environments) also affect productivity. Early C compilers required users to identify variables that should be allocated to registers and encouraged pointer arithmetic instead of array references. Modern compilers can deliver the same performance without requiring programmers to think about these low-level details. Compilers that identify incorrect or questionable programming practice certainly improve productivity, but in the high performance world we should demand more. Vectorizing compilers in the 1970s and 1980s would give feedback about which inner loops would run in vector mode and which would not. Moreover, they were quite specific about what prevented vectorization, even down to identifying which variable in which subscript of which array reference in which statement caused the problem. This specificity had two effects: it would encourage the programmer to rewrite the offending loop, if it was important; and it trained the programmer how to write high performance code. Moreover, code that vectorized on one machine would likely vectorize on another, so the performance improvements were portable as well.

Learning from the vector compiler experience, we should demand that compilers and programming tools give useful, practical performance feedback. Unfortunately, while vectorization analysis is local to a loop and easy to explain, parallel communication analysis is global and can require interprocedural information.

One HPF pitfall that the HPCS languages must avoid is the ease with which one can write a slow program. In HPF, a single array assignment might be very efficient or very slow, and there’s no indication in the statement which is the case. A programmer must use detailed analysis of the array distributions and a knowledge of the compiler optimizations to determine this. MPI programs, as hard to understand as they may be, at least make the communication explicit. The HPCS language proposals to date have some of the same characteristics as HPF, and implementations will need to give performance hints to ensure that users can get the promised performance/productivity.

The key to a useful productivity metric is the ability to measure that we are improving the productivity of generating high performance programs. We may measure productivity as performance/cost, but we don’t get true high productivity by simply reducing the denominator faster than we reduce the numerator. We should want to reduce the denominator, the cost, while preserving or even increasing the performance.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This