Intel Opens Up Multicore Development Library

By Michael Feldman

July 27, 2007

This week Intel once again proved it is serious about getting multicore tools into the hands of developers. On Tuesday, the company announced it was making its Threading Building Blocks (TBB) template library available to the open source community under the GNU General Public License. The library extends the C++ language in order to make it easier to write scalable, parallel applications for multicore processor environments. Intel will still sell the TBB product commercially, as well as bundle it with their own C++ compiler.

In a nutshell, the TBB template library provides high level C++ constructs for concurrency via a task-based model. This enables developers to avoid some of the thornier aspects of parallel programming, like low-level thread management and maintaining thread-safe data. By offering platform-independent methods to express parallel algorithms, declare concurrent containers (thread-safe data objects), and do scalar memory allocations, the programmer is freed from dealing with OS-level threads, locks, and mutexs. For those who need more low-level control, TBB also offers access to atomic operations and the task scheduler. Encapsulated in the implementation is the flexibility to transparently scale the level of parallelization as applications are moved to processors with more (or fewer) cores.

While early adopters of the product were impressed by its capabilities, they also had some reservations. According to James Reinders, Intel’s director of software development products, the decision to take the year-old product to the open source community was driven by customer concerns about investing in a proprietary programming model and their desire to see the software supported on a wider range of OS/hardware platforms. Although Intel has contributed to open source projects in the past and continues to do so, this represents the first time the company has moved a commercial product into the open source realm.

The fact that Intel is willing to let its software be used on non-Intel processors is an indication of the company’s interest in the multicore ecosystem. In truth, even before it went open source, TBB could run on AMD’s x86 chips as easily as Intel’s. So taking TBB to the open source community isn’t going to give its arch-rival an additional edge. For Intel, the chipmaker with the largest share of the general-purpose processor market, the calculation is that it has the most to gain from more widespread parallel software tools. When a rising tide lifts all boats, the Queen Mary benefits the most.

Generally speaking, open source has proven to be the most effective way to spread software across hardware platforms. Currently supported on x86 (32 and 64 bits) on Linux, Windows and Mac OS, TBB will soon have source builds for G5/Mac OS as well as x86/Solaris and Sparc/Solaris 10. FreeBSD source builds are also in the works. To help kickstart the TBB open source project, Reinders says that Intel will be adding engineers to the effort.

A website for the open source project has been set up at www.threadingbuildingblocks.org. And for those who want to delve even deeper, you can now buy Reinders own TBB book — Intel Threading Building Blocks, Outfitting C++ for Multi-core Processor Parallelism. This O’Reilly Nutshell Handbook is geared for the programmer who may not be conversant in concurrent programming.

However, TBB is not an all-inclusive parallel programming model. It’s specifically designed to take advantage of a multicore-based, shared memory environments, as opposed to a distributed memory model found in cluster architectures. Intel reports early success with application segments like digital content creation, animation, financial services, electronic design and automation and design simulation. At this point, the TBB implementation can scale up to 32 cores or so, giving it at least a few years of breathing room as processors catch up. There has been some interest in applying TBB to high performance accelerators like the Cell processor, GPUs or even FPGAs. However, these DMA-based architectures, with lots of parallel units for static data parallelism, are not a great fit for TBB.

Although not suitable for MPI-based applications, if users are interested in using a hybrid approach combining MPI with node-based multicore parallelism, Reinders thinks TBB might worth considering. But even he admits that the hybrid programming model on clusters, hasn’t taken off yet due to the extra programming burden. At this point, most users are content to rely on MPI implementations that make use of node locality to optimize thread management and communication.

Looking forward to manycore processors, TBB will need to address architectural changes that will arrive when core counts start getting into the triple digits. Intel’s own Terascale program is developing processors at this scale. As the core count begins to ratchet up, designers will likely be forced to utilize non-uniform memory architectures (NUMA) to support reasonable memory access times. In order to keep the level of abstraction consistent, TBB will have to pay attention to memory locality and find a way to automate data layout for the user. Manycore architectures will also attract a more varied range of software as they become hosts for workloads that would have required an entire mainframe or cluster in the past.

“TBB is good at programs which are computationally intensive, but when you get into event-driven applications or programs with a lot of I/O, TBB is not ready for that yet, explained Reinders.” And that’s an area of interest for us, because as we get to manycore, programs will be doing more diverse things; we need to be willing to let a processor stall on I/O occasionally. We’d like to expand the programming model to support that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This