Beyond Multicore

By Michael Feldman

August 24, 2007

If you thought computing was just getting interesting with four cores, what happens when the chipmakers start delivering 100-core chips with multiple types of processing units? In this week’s issue, the High End Crusader (HEC) returns, delivering the first of a three part series about the future of parallel computing and heterogeneous processing. For those of you not familiar with HEC, he’s an HPC insider who has been a regular contributor to HPCwire. He remains anonymous so he can speak freely in this public forum. Anonymous or not, HEC always has an interesting take on which way the cutting-edge of computing is slicing.

In part one, HEC describes the current state of affairs of high-end computing and gives us a glimpse of the road ahead. In parts two and three he will argue that the community needs to reconceptualize both parallel computing and heterogeneous processing as we move toward what he refers to as “nanocore” — that is, the point at which processors exceed 64 cores. This is the level at which HEC believes “wholly innovative microarchitectural strategies are required to scale further.” The 64-core inflection point he’s referring to applies to general-purpose processor architecture, not simpler GPU or DSP architectures, which already have core counts at this scale and above.

While increased core count will make systems much more powerful, heterogeneity will make them more intelligent. In truth, heterogeneous computing has come to mean many things. Traditionally it refers to matching different types of processor architectures — scalar, vector, multithreaded, etc. — to the types of workloads that are most suited to them. So, for example, an application that needs to do matrix multiplication along with some non-arithmetic control logic might best be served with a system that encompassed both GPUs and CPUs. Other forms of heterogeneity involve the architecture of the memory hierarchy and the programming mechanisms that tie the various hardware models together.

On the multicore front, we’re already starting to see some early attempts at nanocore. This week Tilera announced TILE64, a 64-core chip aimed at the high performance embedded computing market. With an architecture that is reminiscent of Intel’s 80-core terascale processor prototype, TILE64 has an 8×8 grid of general-purpose processing cores (tiles) connected via an on-chip network, called iMesh. Tilera’s press release claims that it has achieved a scalable architecture significantly beyond current multicore processors:

Because the aggregate bandwidth is orders of magnitude greater than a bus and the distance between cores is shorter, the iMesh technology can be leveraged to create grids as large or small as an application requires, creating a “computing-by-the-yard” scalability…

By including a communication switch on each core, the processor is able to achieve 27 terabits per second of aggregate on-chip bandwidth. At 1 GHz and just 300 milliwatts per core, the whole (32-bit) processor can reach 192 gigaops. This is just a fraction of Intel’s one-plus teraflop of performance for their 80-core terascale prototype, but to some extent that’s comparing apples to oranges. However, both vendors do take advantage of a tiled arrangement of relatively simple processing cores connected by a 2D mesh to achieve much higher levels of performance than the current crop of commodity processors.

As core count gets into the triple digit range, the on-chip network performance becomes relatively more important than the performance of the individual computational units. The result will be that more silicon logic and power consumption will be devoted to the internal interconnect and off-chip memory access. HEC, in particular, points out that we we’re going to have to start paying a lot more attention to power consumption associated with the communication elements as these components start to dominate the system architecture.

For its part, Intel has stated its plans to bring the x86 ISA into HEC’s nanocore world, not just with high core counts, but with some elements of heterogeneous computing thrown in as well. Nehalem, the company’s next-generation microarchitecture will have a heterogeneous-friendly architecture that will be able to put GPU cores or perhaps other types of acceleration units on-chip. But Nehalem will probably top out at 8 cores.

Intel’s terascale effort, which should be commercially viable in the 2010 timeframe, represents the company’s intention to place hundreds of cores on the same processor die. At least some of these cores will be x86 compatible. But Intel has also talked about incorporating “special-purpose” computational engines for workloads like signal processing, graphics or network security. It’s likely that Intel’s contribution to the PSC/Carnegie Mellon NSF petascale Track 1 bid involved some form of this terascale chip.

Cray, as the extreme example of the high performance system vendor, is fully committed to move beyond multicore in both core count and heterogeneity. So far, it has only proposed loosely coupled heterogeneous systems that encompass scalar, vector, multithreading and FGPA processors. It is also actively working on the all-important system software that makes heterogeneous processing accessible to the application developer.

But unless the economic model for processor manufacturing gets turned on its head, system vendors will need to rely on the big chipmakers (e.g., Intel, IBM, AMD, NVIDIA, Sun Microsystems) to supply heterogeneity at the chip level. The expense of microprocessor R&D and the cost of fabs has created a rather exclusive club of chip manufacturers. Of the big chip vendors, only Intel and AMD have shown an inclination to pursue the heterogeneous path — not counting IBM and its Cell processor, which wasn’t really intended to be used for hosting disparate workloads.

While it’s unlikely that processor manufacturing will get turned on its head anytime soon, it’s possible that nanocore will turn it on its side. Imagine a semiconductor manufacturing technology that allowed system vendors to order customized processors from chip manufacturers. So, for example, an OEM who had a contract with an oil & gas company to provide systems for seismic simulations could specify a chip with, say, 80 GPUs and 20 CPUs. Maybe even user-designed cores could be included. While a customized processor is likely to be more expensive than a standard one, the value proposition seems pretty compelling when you’re talking about a 100-core chip.

That’s just one example of how the next wave of parallel processing and heterogeneous computing could radically alter the IT ecosystem. Certainly both software vendors and hardware manufacturers will be in for some big changes in the years ahead. Get ready for an interesting ride.


As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This