Switching Buses

By Michael Feldman

August 31, 2007

With the launch of the Barcelona quad-core processor scheduled in a couple of weeks, AMD is hoping to salvage a rather miserable 2007 and build some momentum for next year. Regardless of how the Barcelona fares against Intel’s latest Xeon quad-core offerings, the Opterons are still the darlings of the HPC world. Because AMD long ago decided to forego the front side bus (FSB) and discrete memory controllers in favor of its HyperTransport interconnect and an integrated controller, the Opteron line is able to address some key requirements of HPC systems: scalability and memory performance.

But Intel is looking to level the playing field. Up until recently, the company has resisted changing its fundamental architecture in order to preserve investments it made around its FSB technology. But as multicore CPUs become more powerful, the need to alleviate the memory bottleneck and support cache coherent non-uniform memory architectures for multiprocessor (MP) platforms is forcing Intel to mirror AMD’s design. As part of Intel’s next-generation Nehalem microarchitecture in 2008, the company plans to support a HyperTransport-like interconnect called the Common System Interface (CSI), as well as an integrated memory controller. (CSI is apparently just the internal name at Intel; the rumor is that the commercial release will be called “QuickPath.”) Similar to HyperTransport, it will offer a high-bandwidth, low latency, point-to-point interconnect for system components.

At this point, it seems likely that the older FSB design will be retained in lower-end Nehalem processors, such as those destined for PCs, laptops and low-core-count, single-processor servers. But the Xeons targeted for the kinds of servers and workstations used to build high-end systems will almost certainly incorporate the new CSI and on-chip memory controller. These new microprocessors are scheduled to be rolled out in 2008 and 2009.

CSI and on-chip memory controllers will also be used in the next-generation “Tukwila” Itanium processors, which will debut in 2008. Itaniums, like their Xeon brethren, currently rely on large banks of on-chip cache to help circumvent the memory performance limitations inherent in the FSB/discrete memory controller architecture. The better performance provided by this new design should help the Itanium compete against its POWER and Sparc processor rivals.

Intel has released few details of the CSI architecture publicly. But David Kanter, Real World Technologies manager and editor, has managed to piece together a rather detailed description of the CSI design, apparently derived from Intel patent applications. In an analysis published this week, he discusses Intel’s CSI approach and the impact it could have on the x86 market.

Based on the Intel patents, a CSI physical link will be 5, 10 or 20 bits wide, depending upon the nature of the connection. Each link will provide as much as 24 to 32GB/s per link, which is on par with the 20.8 GB/s offered by HyperTransport 3.0 — the latest specification. Like HyperTransport, CSI will have the ability to dynamically configure link resources and optimize power usage.

Kanter believes that the introduction of CSI and on-chip memory controllers could substantially realign the Intel/AMD dichotomy in scaled-up servers. He estimates that Intel currently holds approximately a 50 percent share in multiprocessor servers, compared to 75-80 percent of the total x86 market. It would follow that if AMD were to lose its current architectural advantage in the MP server space, it could see its market share in this area cut by half or more.

Writes Kanter:

To Intel, the launch of a broad line of CSI based systems will represent one of the best opportunities to retake server market share from AMD. New systems will use the forthcoming Nehalem microarchitecture, which is a substantially enhanced derivative of the Core microarchitecture, and features simultaneous multithreading and several other enhancements. Historically speaking, new microarchitectures tend to win the performance crown and presage market share shifts. This happened with the Athlon, the Pentium 4, Athlon64/Opteron, and the Core 2 and it seems likely this trend will continue with Nehalem. The system level performance benefits from CSI and integrated memory controllers will also eliminate Intel’s two remaining glass jaws: the older front side bus architecture and higher memory latency.

No mention was made if Intel is considering a Torrenza-like socket specification to give third-party co-processors access to CSI via an open-standard socket. Although the use of Torrenza is not widespread today, it is gaining some traction, especially in the HPC realm where DRC and XtremeData have built socket-pluggable FPGA co-processor modules for application acceleration. While Intel hasn’t embraced third-party co-processing the way AMD has, a CSI-friendly socket standard would seem to be a logical strategy to counter Torrenza.

Over the next several months, much attention is going to paid to Intel’s next-generation 45nm Penryn processors. They will certainly give Intel the ability to offer a greater range of performance and low-power offerings. But for HPC users, the real revolution is still a year or two away in CSI. If Intel manages to use this technology to close the MP scalability and memory performance gap with its rival, AMD will be forced to innovate in other ways. If you’re Intel or AMD, the competition will be challenging, but the rest of the industry gets to enjoy the benefits.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire