DRC Stakes Claim in Reconfigurable Computing

By Nicole Hemsoth

September 7, 2007

DRC Computer Corporation is one of just a handful of companies hoping to ride the popularity of Field Programmable Gate Arrays (FPGAs) into the high performance computing realm. While the difficulties of FPGA programming has held back their widespread use for general-purpose applications, their versatility and suitability for compute-intensive codes has made FPGAs a tempting platform for HPC. DRC President and CEO Larry Laurich talks about the company’s mission and the nature of the technology they’ve developed.

HPCwire: Tell us a little bit about the company, how it got started and what it is offering the HPC user?

Laurich: DRC is three years old, after having acquired the IP assets from VCC, a company run by Steve Casselman, now DRC’s CTO. Steve is one of the recognized “fathers of reconfigurable computing,” and holds some of the earliest and most fundamental patents in the area. DRC has been shipping RPUs (Reconfigurable Processing Units) for almost a year, and launched its second generation product a couple of months ago. With the newest product, the RPU110-L200, DRC provides the HPC user with the most tightly coupled co-processor available with the highest useable memory bandwidth by far of any compute platform.

HPCwire: Compared to other FPGA products targeted for high performance computing, what makes the DRC solution unique?

Laurich: By inserting the RPU directly into a microprocessor socket, the coprocessor gets equivalent access to all the motherboard resources a CPU gets, such as direct HyperTransport (HT) access for CPU to CPU communication, local memory bandwidth, etc. It is DRC’s fundamental understanding of system level issues affecting performance that has led to RPU designs with additional simultaneously accessible memories. Since many applications are starved for data, especially once the logic is accelerated, the RPU can provide true application acceleration.

HPCwire: The lack of high-level software tools has been a major hindrance to FPGA adoption in high performance computing in the past. What kind of development environment is supported by the DRC solution?

Laurich: DRC has simplified the most difficult part of moving software to FPGA hardware by providing the RPU Hardware OS. The simple API for this OS allows the programmer access to 80 percent of the FPGA logic for his own code but provides a pre-configured and locked design for all physical pins and design issues. The application programmer no longer has to worry about timing for the bus and memory interfaces. Those controllers are provided along with DMA, back-pressure or flow control, etc., which allows the application to have an independent clock and assures the data can never overrun the logic or system resources. The remaining programming issues are much more familiar to the application programmer and more easily handled in the C to RTL tools provided by our many partners. Celoxica, Impulse Technologies, and Mitrionics have all developed support packages for the DRC RPU.

HPCwire: Besides the software challenge, what else do you think is keeping FPGA technology from going mainstream in high performance computing and which of these elements are addressed by the DRC solution?

Laurich: It is a matter of an early adopter demonstrating what can be done in a given application area or vertical market. Once the advantages are shown in a real production environment, the rest of that industry has an easier time making the decision. The price-performance benefit is there, the “green-technology” or power savings are compelling, and reduction in the number of nodes by five times or more reduces system management and footprint, which is a significant advantage. Mass market adoption, however, is reasonably assured given the support by most all of the big players  — namely Cray, IBM, HP, Intel and AMD — to hybrid compute platforms incorporating coprocessors or accelerators.

HPCwire: How does reconfigurable computing based on FPGAs stack up against other accelerator technologies that have become available within the past couple of years (e.g., GPUs, ClearSpeed boards, Cell processors)?

Laurich: Each of these new technologies has much the same issue relative to software tools and development flow. If fact, so do multi-core CPUs. All these technologies require programs to be multi-threaded, meaning parallelized for performance. Once the application architects figure out what is necessary to parallelize at least portions of their code, a fine-grained implementation for an FPGA is not much different from a coarse-grained one for CPUs.

The FPGA turns out to be the most flexible architecture that can address the largest cross-section of compute intensive applications. It has logic that can stream or be conditional. The RPU has more memory bandwidth than any of the other technologies. There are multiple vendors supplying and developing tools and libraries.

GPUs will do well in highly streaming threads where no conditional processing is required — a small but meaningful subset of the co-processor market. Programming GPUs can be even more difficult than FPGAs or Cells, but an extensive library for the streaming applications has helped.

ClearSpeed based technology has continually suffered from memory bandwidth, or the ability to move data through the logic at high speed.

Cells are somewhere in-between, but proprietary since both hardware and any compiler or tools are available only from that vendor.

HPCwire: Are there any early adopter stories you can share with us?

Laurich: We have some demos and proof-of-concepts that we have shown the world. Examples include everything from a programmed trading example in the financial market where we can give the trader a 30-50X advantage in reduced latency — which a publication states is worth a minimum of $100 million per year — to a seismic imaging application where the user gets the same performance as software running on a large cluster with a quarter the number of nodes and a fifth the amount of power consumed, at half the price.

HPCwire: What’s next for DRC?

Laurich: More improvements in the Hardware OS will give future RPUs much more intelligence and system capability. Likewise, the RPU will come in configurations to support newer motherboards with different sockets, more workstations, servers, and blade systems. From an application perspective, more libraries and pre-programmed applications will provide more solutions faster and easier.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This