DRC Stakes Claim in Reconfigurable Computing

By Nicole Hemsoth

September 7, 2007

DRC Computer Corporation is one of just a handful of companies hoping to ride the popularity of Field Programmable Gate Arrays (FPGAs) into the high performance computing realm. While the difficulties of FPGA programming has held back their widespread use for general-purpose applications, their versatility and suitability for compute-intensive codes has made FPGAs a tempting platform for HPC. DRC President and CEO Larry Laurich talks about the company’s mission and the nature of the technology they’ve developed.

HPCwire: Tell us a little bit about the company, how it got started and what it is offering the HPC user?

Laurich: DRC is three years old, after having acquired the IP assets from VCC, a company run by Steve Casselman, now DRC’s CTO. Steve is one of the recognized “fathers of reconfigurable computing,” and holds some of the earliest and most fundamental patents in the area. DRC has been shipping RPUs (Reconfigurable Processing Units) for almost a year, and launched its second generation product a couple of months ago. With the newest product, the RPU110-L200, DRC provides the HPC user with the most tightly coupled co-processor available with the highest useable memory bandwidth by far of any compute platform.

HPCwire: Compared to other FPGA products targeted for high performance computing, what makes the DRC solution unique?

Laurich: By inserting the RPU directly into a microprocessor socket, the coprocessor gets equivalent access to all the motherboard resources a CPU gets, such as direct HyperTransport (HT) access for CPU to CPU communication, local memory bandwidth, etc. It is DRC’s fundamental understanding of system level issues affecting performance that has led to RPU designs with additional simultaneously accessible memories. Since many applications are starved for data, especially once the logic is accelerated, the RPU can provide true application acceleration.

HPCwire: The lack of high-level software tools has been a major hindrance to FPGA adoption in high performance computing in the past. What kind of development environment is supported by the DRC solution?

Laurich: DRC has simplified the most difficult part of moving software to FPGA hardware by providing the RPU Hardware OS. The simple API for this OS allows the programmer access to 80 percent of the FPGA logic for his own code but provides a pre-configured and locked design for all physical pins and design issues. The application programmer no longer has to worry about timing for the bus and memory interfaces. Those controllers are provided along with DMA, back-pressure or flow control, etc., which allows the application to have an independent clock and assures the data can never overrun the logic or system resources. The remaining programming issues are much more familiar to the application programmer and more easily handled in the C to RTL tools provided by our many partners. Celoxica, Impulse Technologies, and Mitrionics have all developed support packages for the DRC RPU.

HPCwire: Besides the software challenge, what else do you think is keeping FPGA technology from going mainstream in high performance computing and which of these elements are addressed by the DRC solution?

Laurich: It is a matter of an early adopter demonstrating what can be done in a given application area or vertical market. Once the advantages are shown in a real production environment, the rest of that industry has an easier time making the decision. The price-performance benefit is there, the “green-technology” or power savings are compelling, and reduction in the number of nodes by five times or more reduces system management and footprint, which is a significant advantage. Mass market adoption, however, is reasonably assured given the support by most all of the big players  — namely Cray, IBM, HP, Intel and AMD — to hybrid compute platforms incorporating coprocessors or accelerators.

HPCwire: How does reconfigurable computing based on FPGAs stack up against other accelerator technologies that have become available within the past couple of years (e.g., GPUs, ClearSpeed boards, Cell processors)?

Laurich: Each of these new technologies has much the same issue relative to software tools and development flow. If fact, so do multi-core CPUs. All these technologies require programs to be multi-threaded, meaning parallelized for performance. Once the application architects figure out what is necessary to parallelize at least portions of their code, a fine-grained implementation for an FPGA is not much different from a coarse-grained one for CPUs.

The FPGA turns out to be the most flexible architecture that can address the largest cross-section of compute intensive applications. It has logic that can stream or be conditional. The RPU has more memory bandwidth than any of the other technologies. There are multiple vendors supplying and developing tools and libraries.

GPUs will do well in highly streaming threads where no conditional processing is required — a small but meaningful subset of the co-processor market. Programming GPUs can be even more difficult than FPGAs or Cells, but an extensive library for the streaming applications has helped.

ClearSpeed based technology has continually suffered from memory bandwidth, or the ability to move data through the logic at high speed.

Cells are somewhere in-between, but proprietary since both hardware and any compiler or tools are available only from that vendor.

HPCwire: Are there any early adopter stories you can share with us?

Laurich: We have some demos and proof-of-concepts that we have shown the world. Examples include everything from a programmed trading example in the financial market where we can give the trader a 30-50X advantage in reduced latency — which a publication states is worth a minimum of $100 million per year — to a seismic imaging application where the user gets the same performance as software running on a large cluster with a quarter the number of nodes and a fifth the amount of power consumed, at half the price.

HPCwire: What’s next for DRC?

Laurich: More improvements in the Hardware OS will give future RPUs much more intelligence and system capability. Likewise, the RPU will come in configurations to support newer motherboards with different sockets, more workstations, servers, and blade systems. From an application perspective, more libraries and pre-programmed applications will provide more solutions faster and easier.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with Hackster.io, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., announced yesterday (July 6) a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascad Read more…

By Tiffany Trader

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This