Credit Modeling with Supercomputing

By Bill Blake

September 14, 2007

The creation and deployment of new numerical methods for economic and financial modeling is becoming a critical competitive weapon for banks, hedge funds and other investment firms. From a high performance computing (HPC) perspective, when quantitative analysts are asked how fast these new computations need to be processed, their answer is usually “at least fifteen minutes faster than our competitors with a lot of extra credit for finishing before the close of daily trading.” Consequently, computing requirements on Wall Street are growing exponentially as algorithms and models become more complex to support new investment opportunities, while incorporating ever larger data sets.

But the desktop computers that are used to develop these ever-growing financial codes are inadequate to support full scale production deployment, prompting investments firms to turn to HPC systems such as parallel servers, clusters or grids. Fortunately these systems now employ cost-effective multi-core processors from Intel and AMD, and as a result parallel supercomputing is finally accessible to Wall Street firms.

The problem is the new parallel hardware is like a fast highway that leads to a software wall. Parallel HPCs are unfamiliar computing platforms to most financial analysts, who are accustomed to working with popular mathematical tools such as MATLAB, Python and R to produce their financial models. Computing these models on parallel systems typically requires a team of highly trained programmers to rewrite hundreds of lines of analyst-written VHLL code into thousands of lines of complex C, C++, or FORTRAN involving the Message Passing Interface (MPI) or equivalent manual parallelization techniques. This redesign can take months of time while preventing the interactive experimentation and refinement of the models financial analysts require. These complex coding techniques require programmers versed in parallel programming. And programmers with those skills are not only expensive, they are in short supply in the financial services sector.

Consider the case of Julius Finance, a Wall Street research company that specializes in credit modeling analysis. The company focuses on credit derivative products, analyzing the relative valuation of synthetic collateralized debt obligations (CDOs). The computationally challenging analysis of credit factors such as spread, credit rating, foreign exchange and interest rates for a wide variety of corporate investments has made the credit derivative market a black art at best.

Until now, these financial products have been priced by investment firms using Copula models, a popular approach for modeling dependencies between random variables thanks to their relative mathematical simplicity. But the trade-off for this simplicity has been inconsistent, unconvincing results. “Existing mathematical frameworks for CDO valuation are far from compelling…to put it mildly,” says Peter Cotton, CEO of Julius Finance. “This is not surprising, as rigorous evaluation of credit models is prohibitively time consuming in any conventional research setup.”

Cotton knew that employing new, more sophisticated algorithmic models on massive amounts of variable financial data would give the company a tremendous competitive advantage when it came to making more accurate predictions about a portfolio’s potential.

The company installed a Linux-based cluster to provide the necessary processing power and memory capacity. But rather than employ computer scientists to parallelize the models, Julius Finance took a different approach, using Star-P software to transparently bridge analysts’ desktops with the Linux cluster. This way, the company’s analysts could continue to work in their familiar MATLAB environment, and enable their applications to run on the parallel clusters without reprogramming.

This interactive supercomputing approach allows for continual feedback and refinement from prototype to production, resulting in higher quality models, algorithms and, ultimately, much more accurate portfolio predictions. The company gained a quantum leap in computational performance to handle the massive data sets and model complexities, without having to lose the interactivity and ease of use of their desktop environment. “We took this approach to reduce prototyping time and facilitate memory intensive experiments…looking under more rocks, as it were, and finding very interesting things,” says Cotton.

Julius Finance is part of a growing trend on Wall Street establishing HPCs as a critical resource in the IT data center. The reason: as financial applications become more complex and more compute-intensive, the ability to offer real-time results diminishes with desktop-bound computing. And the big challenge on Wall Street is in providing actionable financial analysis before the window of opportunity closes. Shrinking the “time to solution at full scale” can offer tremendous competitive differentiation to investment firms.

Beyond the specific area of credit modeling, speeding up computations and scenario analyses is critical to all aspects of  financial services — including trading desks, risk management desks, etc. — because each component, while a relatively small part of the overall environment, is potentially computationally expensive. Whether the reactions are in nearly real time, on an hourly basis, or at the end of the day, the decisions could often be improved if they included more trajectories, more scenarios.  The models are dynamic — with frequent updates with new parameters — so flexibility in algorithm development and production deployment is key.

This new interactive supercomputing model can be generalized to a variety of financial analytical applications ranging from numerically-intensive workloads in simulation, optimization and valuation to data-intensive workloads performing pattern detection for fraud detection and trading opportunities, such as:

Monte Carlo Simulation – These simulations have many advantages, including the ease of implementation and applicability to multi-dimensional problems commonly encountered in finance.  However, calculation using Monte Carlo techniques is very time consuming due to the need for simulating many trajectories with multiple parameters. 

Portfolio Optimization — Taking an interactive supercomputing approach, analysts can run their models on parallel systems to optimize thousands of individual portfolios overnight based on the previous day’s trading results. Commercial and open source optimization libraries such as Axioma or CPLEX can typically be plugged in and executed in parallel – all from within the analyst’s desktop application.

Valuation of Financial Derivatives — Valuing financial derivatives is computationally intensive, and requires large amounts of computer time. A re-insurance firm, for example, may need to value and compute hedge strategies for hundreds of thousands of policy holders in its portfolio on a regular and timely basis. Analysts need to be able to explore new valuation methodologies from their desktop, using high performance computers to run billions of complex scenarios.

Detection of Credit Card Fraud — The rise of identity theft together with the popularity of online shopping has resulted in a huge increase in credit card fraud. As thieves become increasingly shrewd in exploiting security weaknesses, banks and credit card companies need to be extremely agile to stay ahead of them. Parallel HPCs enable a bank to easily run more sophisticated fraud detection algorithms against tens of millions of credit card accounts.

Hedge Fund Trading — In balancing a large portfolio of stocks, analysts need to search for short- and long-term patterns, identify correlations between securities, and develop forecasts. Intense computations are required against terabyte-sized “tick store” databases — potentially a decade or more of trading data for thousands of securities. HPCs allow for faster reaction time to market conditions, enabling analysts to evaluate more sophisticated algorithms that take into account larger data sets.

Until now, investment firms faced an “either-or” dilemma by choosing to live with the performance limitations of their desktop systems, or engaging a team of programmers to re-code their algorithms to take advantage of powerful parallel servers or clusters. But that situation changes with new interactive supercomputing models that provide a “both-and” opportunity combining the productivity breakthroughs of easy to use desktop development with a seamless transition to deployment of large, complex financial simulations on parallel servers. Analysts can focus on rapidly delivering the most accurate, comprehensive and actionable intelligence by leveraging abundant parallel system resources without the need for scarce human resources.

—–

About the Author

Bill Blake is the Chief Executive Officer of Interactive Supercomputing Inc. He brings more than two decades of senior executive experience in developing high performance computing systems. He joins ISC from Netezza, where he was senior vice president of product development for the high-performance data warehouse appliance company. Bill previously was vice president of high performance technical computing at Compaq, where he led development and marketing efforts. He received undergraduate and graduate degrees in Electrical Engineering at the Lowell Technological Institute, and is a member of the Institute of Electrical and Electronics Engineers (IEEE), the Association for Computing Machinery (ACM), and the American Association of Artificial Intelligence. Bill is a member of the board of directors of supercomputing pioneer, Cray Inc. Supercomputers, as well as Etnus, Inc., a provider of analytical software for developing complex computer code.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This