A Global Climate of Change

By Christopher Lazou

September 21, 2007

“Our civilisation is destroying itself because it is determined to disregard all limits in all areas.”
     -Dominique Bourg, philosopher of sustainable development

Global warming and its dire consequences have at long last permeated the special interest barriers and are at the centre of political debate. A recent EU Research magazine produced a special feature with the title: “Climate Change: We can’t wait any longer,” stating: “The 4th IPCC report was issued and adopted this spring amidst a blaze of publicity and debate. It summarises two decades of important multidisciplinary research and formally concludes that the symptoms of global warming due to human activity are all too real, and will inevitably progress faster than was previously thought. We must act.”

The “business as usual” model will inevitably increase global warming and consequently destruction, faster than previously predicted. The European Union (a high polluter) has taken onboard the IPCC conclusions and the findings of Nicholas Stern, an economist and author of a forceful report commissioned by the UK government on the cost of global warming. The EU already agreed to drastically reduce green house gas emissions by 20 percent between now and 2020.

The recent Asian Pacific Economic Community (APEC), which includes the USA, China, India, Australia — the biggest polluters — are however dragging their feet. This is likely to reduce the pressure on EU countries to deliver their targets. In the meantime, the devastation of property, infrastructure and threat to life continue unabated. Heat waves, forest fires, drought, flooding and hurricanes are becoming everyday news items.

It was in this climate that from Sept. 9-13 about eighty meteorologists and HPC experts from large-scale computing centres from eleven countries attended the bi-annual Computing in Atmospheric Sciences (CAS) workshop on the use of HPC in meteorology, held at the idyllic Imperial Palace Hotel, Annecy, France. The workshop was organised by the National Centre for Atmospheric Research (NCAR), USA. This excellent small and friendly workshop provided a tour de force in meteorological and computing techniques by active practitioners, some of them IPCC contributors, striving to maximise the latest HPC technology to refine and improve their climate prediction models.

Refinement of models is an urgent requirement for the development of realistic mitigation strategies to address the potential catastrophic consequences of global warming. These talks were augmented by speakers from broader scientific centres of excellence, like CERN, NERSC and ORNL, and from funding bodies such as the NSF, in the USA.

Most presenters came from sites in the USA with large Cray XT3/4, IBM Power5/6 and Blue Gene/L systems, while the European and Australian contingent included a strong representation from sites with large-scale parallel vector NEC SX-8 systems. The main HPC vendors described their upcoming products, their vision for petaflops computing and the technology advances needed for exaflops systems. What became abundantly clear during this workshop is that the “business as usual model” — be it in human activities as a whole or in developing computing technologies — is not a realistic option and radical new approaches are needed. This article highlights a few of the many climate and technology issues raised by presentations given at this workshop.

There were 38 presentations in three and a half days, some describing grid’s enabling potential for international collaboration, such as CERN and also within the community of climate system modelling. The talks were crammed with technical information on how to use parallel supercomputers for computation using mathematical models that describe climate/weather patterns over time. These were interspersed with weather maps and video pictures from simulations and compared with satellite pictures of actual weather events.

Why are meteorologists doing all this Earth System Modelling and what is the urgency? As stated above, dramatic flooding and other extreme events related to climate change are happening and frequently reported in the press and on television. For example, it has just been reported that satellite images show that the North West passage connecting the Atlantic and the Pacific oceans is free of ice, making it navigable for the first time since records were kept. Also, seventeen central African countries are currently flooded, with millions of peoples’ homes and crops devastated. “It is common knowledge that it is the countries of the south that stand to be hardest hit by global warming when at present it is the countries of the north that are the biggest polluters,” Nicholas Stern was reported as saying.

Climate simulations show that green house gases attributed to human activities are causing an increase in the Earth’s average temperature. Consequently, fires from intensely hot summers and flooding from heavy rainfall are becoming more common. These images of devastation and the economic aftermath are injecting a political dimension into the proceedings.

A number of talks dealt with prediction and mitigation strategies, to deal with devastating events such as flooding and hurricanes. The costs of these events are enormous. Hurricane Mitch caused the deaths of over 9,000 people in Nicaragua mostly from flooding and landslip.

Greg Holland from NCAR gave a stimulating keynote talk titled: “Anthropogenic Influences on Intense Hurricanes,” which focused not only on observed hurricanes, but also on the scientific evidence for causal attribution.

He explained that apart from direct impacts, indirect impacts arise from forecast uncertainty, design and preparations and imperfect knowledge of cyclone parameters. Coastal impacts from tropical cyclones include harbour damage, house and crop destruction, forest damage from wind, waves, flooding and landslips. Excluding the loss of life, the direct damage from hurricane Katrina was about $80 billion dollars and an additional $40 billion as indirect costs to the USA. About 95 percent of the oil and gas production in the Gulf was disrupted and about 150 oil rigs were lost. Tornadoes and flooding reached as far away as Quebec and people were displaced from most coastal states. Government recovery costs were $10-15 billion. The Consumer Price Index (CPI) impact was around 1.4 percent to 2.3 percent. The total CPI cost was estimated to be: $16 to 26 billion. The cost per household ranged from $140 to $230. Reduction in economic growth rate was about 1 percent, but this was compensated by a subsequent overshoot in the economy. In the USA, 50 percent of the population live within 50 miles from the coast and the cost for evacuating one mile of coast is about $1 million per day. Note that recovery from a storm impact takes years.

Greg went on to convey the IPCC position on hurricanes: “It is likely that increases have occurred in some regions since 1970; it is more likely than not a human contribution to the observed trend; it is likely that there will be future increasing trends in tropical cyclone intensity and heavy precipitation associated with ongoing increases of tropical SSTs [sea surface temperatures].” He demonstrated with detailed graphs that the bulk of the warming since 1970 is due to anthropogenic effects. He reviewed Atlantic SST and atmospheric modes of variation and demonstrated that these are not accounted for by natural variability. His conclusion was unequivocal: “Anthropogenic climate change is substantially influencing the characteristics of North Atlantic tropical cyclones through complex ocean-atmosphere connections and may be influencing other regions.”

The above view was reinforced by Dr. Warren Washington in his talk titled: “Computer Modeling of the 21st Century and Beyond.” From the 1970s, Warren sat on a committee that advised six U.S. presidents on climate issues. He is also heavily involved at NCAR in the Community Climate System Model (CCSM), which has produced one of the largest data sets for the IPCC fourth assessment. Echoing Greg’s sentiments, he said, “As a result of this and other assessments, most of the climate research science community now believes that humankind is changing the Earth’s system and that global warming is taking place.” He also told me that every question raised by sceptics was thoroughly reviewed and rigorously refuted. “Natural events do not explain global warming. The smoking gun is human emissions, and once included, the warming can be reproduced from year to year,” he stated.

According to Paul Crutzen, another IPCC participant: “The only criticism that could be made of the IPCC report is of it being too cautious.”

For HPC vendors the good news is that there is a lot of new work to be done requiring oodles of computing power. The computing requirements are for data assimilation, modelling internal oscillations, prediction of external forces and hurricane/climate feedback. A system delivering 200 teraflops of sustained performance would be appreciated and utilised today.

In fact, most sites pursuing climate change research are well endowed with computer resources. Three years ago they were lucky to muster 0.5 teraflops of sustained performance. Current procurements in progress have minimum requirements of around 10 terflops of sustained performance in phase one followed by at least twice that by 2009. The climate applications, of course, can use an order of magnitude more power now without waiting for the end of the decade. The tantalising fact is at least one system capable of delivering 200 teraflops of sustained performance with less than 9,000 processors will be available from Japan early next year, but it is unlikely to be sold in the USA.

In the next few years, the CCSM will be further expanded to include reactive troposphere chemistry, detailed aerosol physics and microphysics, comprehensive biogeochemistry, and ecosystem dynamics, and the effects of urbanization and land use change. These new capabilities will considerably expand the scope of earth system science that can be studied with CCSM and other climate models of similar complexity. Higher resolution is especially important near mountains, river flow, and coastlines. Full hydrological coupling including ice sheet is important for sea level changes. It will include better vegetation and land surface treatments with ecological interactions as well as carbon and other biogeochemical cycles.

For example, Dave Randal has a five-year NSF grant to study clouds using high-resolution models. Clouds are central to earth sciences, climate change, weather prediction, the water cycle, global chemical cycles and the biosphere. Dave stated: “We are being held back in all of these areas by an inability to simulate the global distribution of clouds and their effects on the Earth system.” The need for high resolution catapults this application into the realm of petaflops computing.

The computer requirements for the next generation of comprehensive climate models can only be satisfied by major advances in computer hardware, software, and storage. The classic climate model problems with supercomputer systems are: The computers (with the exception of vector systems) are not balanced between processor speed, memory bandwidth and communication bandwidth between processors, including global computational needs. They are more difficult to program and optimize; it is hard to get I/O out of computers efficiently and computer facilities need to expand archival data capability into the petabyte range. There is a weak relationship between peak performance and performance on actual working climate model programs.

Thus with sustained teraflops computing performance now on stream, meteorologists are moving from climate to Earth System Modelling (ESM). This is because feedback loops between climate, ecology and socio-economics are significant. Climate modelling is not possible without proper representation of these systems. Earth System Modelling is: multi-scale (time and space), multi-process, multi-topical (physics, chemistry, biology, geology, economy, etc.). which is both compute- and data-intensive. Some people claim it requires several orders of magnitude more computing power to tackle the problem. Petaflops and exaflops are therefore eagerly awaited.

Stefan Heinzel, director of Garching computing centre of the Max Plank Society (RZG), Germany, gave a keynote titled: “Toward Petascale Computing in Europe – A Challenge for the Applications and the Hardware Vendors.” He listed the current petaflops projects and their likely hardware architectures. The Riken project in Japan, the Cray Cascade and the IBM PERCS in the USA were all mentioned. Doing the math, he indicated that one petaflop of sustained performance would need hundreds of thousands of cores. Even for vector machines, it could be around 50 thousand cores. The question is how does one deal with O(50000) parallelism using local memory and MPI? What about the CPU memory gap, which keeps widening as CPUs grow much faster per year than the 7 percent increase of memory speed?

Transistors on an ASIC are still doubling every 18 months at constant cost, but in the last two years, neither AMD nor Intel announced significantly faster cores. Performance improvements are now coming from an increase in cores on a processor. Presently four cores are standard; soon this will be eight. Intel already announced an 80-core processor technology. IBM doubled the performance from the Power5 to Power6 reaching 4-5 GHz, but using 2 cores. The Power6+ could increase the frequency incrementally, but doubling the frequency of the Power7 is going to be difficult. After the year 2015 one envisages about 512 cores or more (nanocore).

Sequential applications are of O(1). There is no substantial performance increase delivered by faster cores. It is the same on the desktop and on HPC systems. The snag is that memory speed increases only seven percent per year, with no improvement of latency of the cache architecture or memory bandwidth. Current HPC applications can use O(K) MPI tasks, mapped to threads. “Classical” scaling can achieve not higher than O(3,000); while the Blue Gene/L can achieve O(30,000). Higher scalability in the range of O(M) requires new technologies in the processor and in the nodes. An SMP programming model between hundreds of cores requires hardware support for lock mechanisms, transactional memory for atomic updates, new micro architecture for latency hiding and pre-fetch hints, i.e., with “assist threads.” The memory bandwidth wall is the limiting factor for scalability of the multicore architecture.

The file and I/O system needs to support hundreds of thousands of clients. To solve the scalability problem, a low latency communication is required. One expects a huge number of files in a single file system — trillions of files with terabyte-per-second transfer rates. For robustness different techniques are also needed, since RAID6 is not an adequate I/O connection mechanism.

For petaflop systems, the operating system (OS) and middleware need to have awareness of massive parallelism. OS failures have to be reduced. OS jitter impacts can have dramatic performance degradations for applications. Lightweight operating systems or special reduced standard kernels should be considered. There is necessity for interrupt synchronization and dynamic management of various page sizes. Applications should adapt their page sizes dynamically, which should result in a reduction of boot time and time to load an application. Hierarchical concepts should be implemented to solve scalability issues; hierarchical daemon structures are required for supporting hundreds of thousands of clients and for queuing and monitoring systems.

And, of course, one hits the processor power wall. Smaller cores help, providing more operations per watt. A lower frequency also helps to increase the number of cores, i.e., more operations per watt. This implies higher scalability, but the ratio of sustained performance is an open question. Memory and huge caches use significant power too, as does the interconnect. The challenge is to optimize the power consumption of each component.

In summary, the use of multicore, and later nanocore, architectures implies a challenge for petascale applications. There is a need to hide the memory wall. Cache architecture and memory have to improve latencies and bandwidth. New synchronization mechanisms have to be realized with SMP parallelism becoming more important. Helper threads will support pre-fetch techniques, but the applications have to improve latency tolerance. The interconnect limit implies new programming techniques are needed. Increased power consumption is the most critical problem due to budget limitations. The necessity of reinventing parallel computing is an enormous challenge caused by the massive increase of cores in future architectures.

The Cray XT series and IBM Power and Blue Gene systems, as well as other vendors in the USA and vendors such as NEC and Fujitsu from Japan, are developing petaflops systems, but how effectively these systems can be utilised is an open question and fraught with a myriad of challenges.

During the last CAS workshop in 2005, a strong emphasis was placed on data management and the challenges it entails. This time, the emphasis was more on power used by supercomputers (carbon footprint) and the facility footprint (space) requirements.

In my view, global warming is the most pressing challenge of the 21st century, and we all need to reduce our carbon footprint and become carbon neutral. Our political leaders should be judged whether they are “fit for purpose” and then held accountable for the mitigation policies they enact. When Mr Alan Greenspan, the former federal reserves (U.S. central bank) chairman, says in his newly published autobiography that “the Iraq war is largely about oil,” he should have added that it is also an irresponsible way of avoiding making the economic decisions needed to start mitigating “an inconvenient truth,” global warming.

The workshop presentations are available on the NCAR Web site: http://www.cisl.ucar.edu/dir/CAS2K7/.


Copyright (c) Christopher Lazou, HiPerCom Consultants, Ltd., UK. September 2007. Brands and names are the property of their respective owners.

For additional information, see the NCAR announcement on the eighth biennial session of Computing in Atmospheric Sciences (CAS2K7) at http://www.hpcwire.com/hpc/1791812.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This