FPGA Acceleration Gets a Boost from HP, Intel

By Michael Feldman

September 21, 2007

It’s been said more than once that users of high performance computing have an almost insatiable demand for computational power. Applying Moore’s Law to produce additional cores on general-purpose processors helps, but ultimately fails, to keep up with this demand. Bigger systems can be built, but power and size considerations limit scalability.

These obstacles have increased interest in hardware accelerators. FPGAs, GPUs, Cell processors and ClearSpeed boards are all candidates for offloading the kind of fine-grained parallelism common to many HPC applications. Seismic modeling, financial analytics and bioinformatics applications have been sped up anywhere from 10 to 300 times using these newer technologies. And accelerators are able to do this at a fraction of the cost and power of general-purpose CPUs. But in many cases, hyperbole has been delivered faster than real products. For FPGAs, this might be starting to change.

When FPGAs hit the 90nm process node, manufacturers were able to build chips with enough gates and memory on them to host real HPC kernels. The Xilinx Virtex-4 and Altera Stratix II are two such chips. More recently, Xilinx and Altera have delivered even more powerful FPGAs, using 65nm technology — Virtex-5 and Stratix III, respectively. Reconfigurable computing vendors are just catching up to the newfound treasure. DRC Computer Corp., XtremeData Inc., Celoxica Holdings plc, Nallatech, Mitrionics AB, Impulse Accelerated Technologies and a handful of others are beginning to crack the HPC marketplace.

This week Celoxica announced that its RCHTX acceleration board has been qualified by HP for its ProLiant DL145 server. Customers can now buy an HP server equipped with Celoxica’s FPGA board, with HP standing behind it. An accelerated HP machine was demonstrated at the HPC on Wall Street conference on Monday.

The RCHTX board is based on the Xilinx Virtex-4 FPGAs. (Celoxica also has developed support for the next-generation Virtex-5.) According to Jeff Jussel, Celoxica’s VP of Marketing, it still can be a challenge to fit some of the algorithms on the 90nm Virtex-4 chips, but there is certainly enough real estate on the die to implement a lot of useful double-precision floating point codes.

“Frankly, we only need to get enough multipliers on the FPGAs to do the job,” explains Jussel. “We’re finding that they are now big enough so that we can do that.”

Celoxica has targeted the financial services space as one sector with an acute need for accelerated solutions and, frankly, one with the wherewithal to invest in emerging technologies like theirs. The company is in the process of carrying out a “paid engagement” for a Tier 1 investment bank to demonstrate a proof of concept for the RCHTX technology applied to the bank’s analytics applications. Results of the study have shown improvements in the power-speed ratio of up to 30 times compared to the bank’s current server technology.

The partnership with HP is a significant development for Celoxica. Big banks and other financial institutions need to feel comfortable with the level of support they’re going to get with their mission-critical technology. With a staff of 46, it’s hard for Celoxica to provide that by themselves. They realize hooking up with Tier 1 vendors gives them a big boost into these markets.

One advantage to using FPGAs as an accelerator technology are their reconfigurability. In the financial arena, the same system could be used to do both transaction-level applications, like market data pre-processing, and financial analytics, like options trading and derivative analysis. In Celoxica’s current implementation, though, both applications can’t be performed simultaneously. The RCHTX card has two FPGAs: user and RTOS. The RTOS FPGA manages the hardware interface and handles the communication between memory, the processors and the user FPGA. The user FPGA is the bigger processor and is completely available for application code. Although the user is limited to running one application at a time, switching codes takes only milliseconds.

Like DRC and XtremeData, Celoxica takes advantage of AMD’s Torrenza strategy which opens up the AMD64 platform to third-party coprocessors and allows them to be part of the computing fabric. Celoxica’s accelerator card uses a HyperTransport eXpansion (HTX) slot rather than plugging directly into an Opteron socket, but it still benefits from direct connection to the CPU and memory. AMD has positioned Torrenza as a big differentiator against Intel.

“Far from thinking of us as stealing sockets [from them], they’re seeing this as a way to steal sockets away from Intel,” explains Jussel. “AMD has been a big help as partner. They’ve tied us in with their server partners and helped support the qualification with people like HP.”

Although Celoxica is also part of Intel’s Geneseo initiative, which uses PCI Express (PCIe), Jussel says, at this point, HyperTransport is going to be the fastest way to connect to a processor. It gives you native bus speeds and avoids having to negotiate a bridge to an external bus, as would be necessary with a PCIe solution. Intel’s answer to HyperTransport, CSI (what Intel is now calling QuickPath), is in the works for 2008 for the company’s next-generation Nehalem architecture.

Intel has licensed its FSB technology to Xilinx, Celoxica’s partner, so an FPGA-FSB solution is a possibility. But, says Jussel, “It remains to be seen whether or not you can get FPGAs hooked up to it and the motherboards out before [Intel] comes out with CSI.”

As a matter of fact, a couple of vendors were able to do just that. At the Intel Developer Conference (IDF) on Tuesday, XtremeData and Nallatech unveiled FPGA acceleration modules that could be plugged into Intel Xeon-based platforms.

At IDF, XtremeData demonstrated their new XD2000i module connected to Intel’s FSB. The XD2000i is pin-compatible with the Xeon processor socket in dual- or quad-socket servers. The module will contain three Altera Stratix III FPGAs. Two are reserved for the application. The other one will be used as a bridge to manage FSB communication, allowing the user to reprogram the application FPGAs on the fly.

According to XtremeData, the module was designed to plug into any Xeon DP platform. The company prides itself on fitting into any supported system, by adhering to the CPU vendor’s recommended “keep-out space,” which allows the FPGA module to fit into anyone’s box. XtremeData’s module for AMD platforms works the same way, but in this case, via an AMD64 socket. “Anyplace you can fit an AMD Opteron, you can fit our module — without exception,” says Geno Valente, XtremeData’s VP of Marketing.

Like Celoxica, XtremeData is heavily focused in the financial service market. Many of their current customers are the big financial institutions, which tend to be shy about talking about their internal technology. But according to Valente, they have about 50 or 60 such customers. Most of them are using the XtremeData modules in Opteron sockets to accelerate Monte Carlo simulations for applications like options pricing.

“It’s in the grid, where there are 10,000 CPUs crunching away, playing war games with the bank across the street,” says Valente.

The XD2000i solution was made possible because Intel licensed its FSB intellectual property to XtremeData. When you buy the XD2000i module, it comes with the FSB IP in it, but encrypted so that no one else can tinker with it. Intel created a similar arrangement with Nallatech, a Scottish company that specializes in FPGA solutions, who also launched their FPGA-FSB solutions at IDF. Unlike XtremeData’s Altera hardware, the Nallatech module is based on Xilinx FPGAs.

The fact that Intel was willing to license the FSB technology suggests that the company realizes that there is value outside of the x86 universe that they can tap into. Intel’s Geneseo initiative for PCIe is another example of this line of thinking. The FPGA-FSB solutions give Intel some parity against FPGA-HyperTransport offerings for AMD-based platforms. But the introduction of CSI in 2008 should really level the playing field.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This