Parallel Thoughts

By Michael Feldman

September 28, 2007

As Intel and AMD take a break from beating each other about the quads, this week we’ll turn our attention to software — specifically, parallel programming. Yes, multicore processors, GPUs and FPGAs are all the rage; but without applications to run on them, they’re just pretty etchings. In this week’s issue we have three articles that discuss different software approaches to getting the most out of the new hardware.

In our first feature article, RapidMind Chief Scientist Michael McCool makes a case for data parallelism — not surprising, considering his company’s platform is all about exploiting that particular aspect of HPC applications. McCool’s contention is that traditional task parallelism is of only limited use, since this model is difficult to scale to the levels necessary for today’s multicore systems, much less the manycore systems of the future. The main problem here is that the memory bottleneck demands much more latency tolerance than can be achieved by the relatively low numbers of tasks that can be naturally teased out of a typical application.

Says McCool: “The solution to this dilemma is data parallelism. In data parallelism, the structure of the data is used to drive the creation of more and more parallel tasks as needed. Since larger problems with more data naturally result in more parallel tasks, a data-parallel approach results in a scalable solution that can automatically take advantage of more and more cores.”

McCool does make an important distinction between SPMD (Single Program, Multiple Data) parallelism and SIMD (Single Instruction Multiple Data) parallelism. The former is the more versatile, inasmuch as it avoids the latter’s limitation of relying on a single operation per data stream. In essence, SIMD implies vector processors, while SPMD can be applied to a variety of architectures.

In “Language Design for an Uncertain Hardware Future,” The MathWorks’ Rod Lurie contends that the implementation language should be selected with the domain expert in mind. The idea is that language should enable users to develop applications as quickly as possible, without having to worry about the target architecture. He suggests programmers take a two-pass approach to software development. In the first pass, they should concentrate on getting the algorithm correct, and not be concerned with performance issues. In the second pass, the programmer can go back and insert parallelism to optimize runtime execution. But the language system itself should be responsible for mapping the parallelism onto the underlying hardware.

According to Lurie: “In this two-pass model, domain experts, like the scientists and engineers who will be major consumers of high performance computing systems, should be able to express their ideas in a natural way, allowing them to explore their solution space rapidly. To maximize their productivity, these experts should be able to focus on their core competencies.”

The second pass is accomplished by annotating the original algorithm with parallel constructs, like PARFOR, MATLAB’s method of specifying parallel for-loops. Parallel annotation usually has the advantage of being compatible with non-parallel hardware. In other words, the parallel constructs will just be ignored when executed on a single-core platform.

To round out our trio, Visual Numerics’ Tim Leite writes about some of the difficulties of porting applications from legacy systems to clusters. The advantages of porting are obvious, but the obstacles can be formidable and include preserving elements like computational accuracy and portability. Multiple language support also can become a big issue when migrating software to a new platform. Leite suggests that using commercial numerical libraries to insulate the application from the underlying hardware can help to ease some of these porting pitfalls. He also notes that these same libraries often give the developer some specific support for MPI programming.

Writes Leite: “As compute clusters become more prevalent and powerful, computational libraries continue to evolve to assist the developer in leveraging the cluster technology. Building parallel processing-enabled applications can be difficult, and commercial libraries can help programmers avoid some of the issues associated with optimizing code for a cluster. In fact, some libraries have introduced techniques that assist not only the sophisticated programmer, but also the novice distributed computing developer.”

While each of the three approaches reflects the particular vendor’s offerings, they all have some important elements in common. One is the realization that existing commercial toolchains can be harnessed. Although the APIs in the vendor solutions are proprietary, they leverage standard language environments. For example, The RapidMind platform is built around a C++ framework and can take advantage of the large ecosystem of tools, libraries and applications that has grown up around that language. The MathWorks is fortunate to have its very own and very popular MATLAB language. It was originally developed with a single processor in mind, but the Distributed Computing Toolbox was added in 2004 to help users adapt their code for the emerging generation of parallel hardware. And finally, Visual Numerics’ IMSL libraries are written in the some of the most widely used languages today: C, C#, Java and Fortran. Almost without exception, commercial parallel software products are built on top of well-established languages.

Each software approach discussed here also pays a good deal of attention to maintaining portability across targets. Since application development has become one of the most severe bottlenecks in system deployment, any technology that can decouple the code from the hardware is greatly appreciated. With the recent proliferation of multicore processors, accelerator coprocessors and cluster architectures, there is a real motivation to make sure the software developer (and end-user) is insulated as much as possible from hardware concerns. RapidMind’s solution is perhaps the most ambitious in this regard. It’s designed to map application code to x86 CPUs, a number of GPUs, or the Cell processor.

Related to portability is scalability. Today’s clusters come in many sizes, from a few nodes to thousands. At the level of the processor, chipmakers are using Moore’s Law to double the core count every couple of years. If applications aren’t developed with scalability in mind, the code’s longevity will be tied to the hardware it was originally targeted for. In the brave new world of parallel architectures, the ability to automatically scale software is a necessity.

Admittedly, none of the current approaches to deal with parallel programming is without drawbacks. For one thing, each tends to focus on a single dimension of parallelism, usually either at the level of the processor or at the level of the cluster. And Lurie himself acknowledges that his two-pass model would be unnecessary if the underlying language had built-in intelligence to implicitly perform parallelization. Forcing the software writer to think in parallel is the single biggest obstacle to large-scale development of parallel codes. Today unfortunately, there are no magic bullets because there is no magic gun. A more general framework awaits.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This