Parallel Thoughts

By Michael Feldman

September 28, 2007

As Intel and AMD take a break from beating each other about the quads, this week we’ll turn our attention to software — specifically, parallel programming. Yes, multicore processors, GPUs and FPGAs are all the rage; but without applications to run on them, they’re just pretty etchings. In this week’s issue we have three articles that discuss different software approaches to getting the most out of the new hardware.

In our first feature article, RapidMind Chief Scientist Michael McCool makes a case for data parallelism — not surprising, considering his company’s platform is all about exploiting that particular aspect of HPC applications. McCool’s contention is that traditional task parallelism is of only limited use, since this model is difficult to scale to the levels necessary for today’s multicore systems, much less the manycore systems of the future. The main problem here is that the memory bottleneck demands much more latency tolerance than can be achieved by the relatively low numbers of tasks that can be naturally teased out of a typical application.

Says McCool: “The solution to this dilemma is data parallelism. In data parallelism, the structure of the data is used to drive the creation of more and more parallel tasks as needed. Since larger problems with more data naturally result in more parallel tasks, a data-parallel approach results in a scalable solution that can automatically take advantage of more and more cores.”

McCool does make an important distinction between SPMD (Single Program, Multiple Data) parallelism and SIMD (Single Instruction Multiple Data) parallelism. The former is the more versatile, inasmuch as it avoids the latter’s limitation of relying on a single operation per data stream. In essence, SIMD implies vector processors, while SPMD can be applied to a variety of architectures.

In “Language Design for an Uncertain Hardware Future,” The MathWorks’ Rod Lurie contends that the implementation language should be selected with the domain expert in mind. The idea is that language should enable users to develop applications as quickly as possible, without having to worry about the target architecture. He suggests programmers take a two-pass approach to software development. In the first pass, they should concentrate on getting the algorithm correct, and not be concerned with performance issues. In the second pass, the programmer can go back and insert parallelism to optimize runtime execution. But the language system itself should be responsible for mapping the parallelism onto the underlying hardware.

According to Lurie: “In this two-pass model, domain experts, like the scientists and engineers who will be major consumers of high performance computing systems, should be able to express their ideas in a natural way, allowing them to explore their solution space rapidly. To maximize their productivity, these experts should be able to focus on their core competencies.”

The second pass is accomplished by annotating the original algorithm with parallel constructs, like PARFOR, MATLAB’s method of specifying parallel for-loops. Parallel annotation usually has the advantage of being compatible with non-parallel hardware. In other words, the parallel constructs will just be ignored when executed on a single-core platform.

To round out our trio, Visual Numerics’ Tim Leite writes about some of the difficulties of porting applications from legacy systems to clusters. The advantages of porting are obvious, but the obstacles can be formidable and include preserving elements like computational accuracy and portability. Multiple language support also can become a big issue when migrating software to a new platform. Leite suggests that using commercial numerical libraries to insulate the application from the underlying hardware can help to ease some of these porting pitfalls. He also notes that these same libraries often give the developer some specific support for MPI programming.

Writes Leite: “As compute clusters become more prevalent and powerful, computational libraries continue to evolve to assist the developer in leveraging the cluster technology. Building parallel processing-enabled applications can be difficult, and commercial libraries can help programmers avoid some of the issues associated with optimizing code for a cluster. In fact, some libraries have introduced techniques that assist not only the sophisticated programmer, but also the novice distributed computing developer.”

While each of the three approaches reflects the particular vendor’s offerings, they all have some important elements in common. One is the realization that existing commercial toolchains can be harnessed. Although the APIs in the vendor solutions are proprietary, they leverage standard language environments. For example, The RapidMind platform is built around a C++ framework and can take advantage of the large ecosystem of tools, libraries and applications that has grown up around that language. The MathWorks is fortunate to have its very own and very popular MATLAB language. It was originally developed with a single processor in mind, but the Distributed Computing Toolbox was added in 2004 to help users adapt their code for the emerging generation of parallel hardware. And finally, Visual Numerics’ IMSL libraries are written in the some of the most widely used languages today: C, C#, Java and Fortran. Almost without exception, commercial parallel software products are built on top of well-established languages.

Each software approach discussed here also pays a good deal of attention to maintaining portability across targets. Since application development has become one of the most severe bottlenecks in system deployment, any technology that can decouple the code from the hardware is greatly appreciated. With the recent proliferation of multicore processors, accelerator coprocessors and cluster architectures, there is a real motivation to make sure the software developer (and end-user) is insulated as much as possible from hardware concerns. RapidMind’s solution is perhaps the most ambitious in this regard. It’s designed to map application code to x86 CPUs, a number of GPUs, or the Cell processor.

Related to portability is scalability. Today’s clusters come in many sizes, from a few nodes to thousands. At the level of the processor, chipmakers are using Moore’s Law to double the core count every couple of years. If applications aren’t developed with scalability in mind, the code’s longevity will be tied to the hardware it was originally targeted for. In the brave new world of parallel architectures, the ability to automatically scale software is a necessity.

Admittedly, none of the current approaches to deal with parallel programming is without drawbacks. For one thing, each tends to focus on a single dimension of parallelism, usually either at the level of the processor or at the level of the cluster. And Lurie himself acknowledges that his two-pass model would be unnecessary if the underlying language had built-in intelligence to implicitly perform parallelization. Forcing the software writer to think in parallel is the single biggest obstacle to large-scale development of parallel codes. Today unfortunately, there are no magic bullets because there is no magic gun. A more general framework awaits.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This