Programming Models for Scalable Multicore Programming

By Michael D. McCool

September 28, 2007

Multicore devices will quickly evolve in both architecture and core count. This will motivate software developers to decouple the code from the hardware, in order to enable applications to move between different architectures and automatically scale as new processor generations are introduced. An appropriate programming model can enable this decoupling while maintaining — and even enhancing — performance.

Moore’s Law is a statement about transistor density increasing over time. It has become harder and harder to squeeze extra performance out of a single core by using more transistors, and the fact that power consumption increases rapidly and nonlinearly with clock rate blocks further increases in performance by scaling to higher gigahertz ratings. Therefore, all major processor vendors have now switched to an explicitly parallel, multicore processor strategy. By combining multiple small, efficient cores onto a single chip, it is possible to get much higher overall performance and simultaneously improve power efficiency.

Unfortunately, only parallelized applications can exploit this additional performance. In fact, since the individual cores on a processor are often slower than the large single-core processors of the past, non-parallelized applications may in fact be slower on multicore processors. Also, since the number of cores will grow exponentially over time (under the new interpretation of Moore’s Law), any application, in order to grow in performance, must be written to use any number of cores in a scalable fashion.

Autoparallelization tools are unlikely to help. Modern processors already exploit internally much of the implicit parallelism in an application, in the form of low-level instruction level parallelism (ILP). It has been shown that most applications have relatively small amounts of such implicit parallelism, and that this is already nearly fully utilized by modern processors.

However, there are further complications. The memory system is actually the chief bottleneck in many applications. In order to take advantage of the increased computational performance of a processor, the data must be moved onto the chip and off again as efficiently as possible. If the data rate cannot keep pace with the computational performance, than any increase in on-chip computational performance is useless.

In a multicore processor, all cores on a processor must share a finite off-chip bandwidth, making memory access even more of a bottleneck. Also, accessing main memory from the processor, for data that is not in cache, can take hundreds of processor clock cycles to complete. This latency can severely degrade performance since in the worst case the processor must stall while waiting for the memory access to complete.

There is a solution to this: even more parallelism! If the processor has extra, independent work to do while waiting for long-latency operations to complete, then it can run more efficiently. Single-core simultaneous multithreading, also called hyperthreading, is really a mechanism to hide latency. By having multiple concurrent tasks on a single core, it is possible to switch from one to another when one task encounters a long-latency operation, such as a memory access.

Little’s Law states that for efficient execution, the number of concurrent tasks “in flight” at any point in time should be equal to the latency times the parallelism. A modern four-core processor with the ability to issue four floating-point operations (using SSE instructions or some other form of instruction-level-parallelism) at once has a total parallelism of 16, since it can issue 16 operations per clock. Suppose in general that we access main memory for every 8 numerical operations, which is an optimistic value. With a main memory latency of 128 cycles — again optimistic — we need 256 separate, independent tasks in order to fully utilize the processor.

In other words, multicore processing is only exacerbating an already challenging problem. Most software today is grossly inefficient, because it is not written with sufficient parallelism in mind. Breaking up an application into a few tasks is not a long-term solution. First, lots and lots of parallelism is actually needed for efficient execution: much more than the number of cores, actually. Second, with the number of cores increasing exponentially, more and more parallelism will be needed over time.

The solution to this dilemma is data parallelism. In data parallelism, the structure of the data is used to drive the creation of more and more parallel tasks as needed. Since larger problems with more data naturally result in more parallel tasks, a data-parallel approach results in a scalable solution that can automatically take advantage of more and more cores. Data parallel programming models, since they also focus on the data and its movement, also result in predictable memory access patterns and this can also be used to improve the efficiency of memory access.

There is some concern about the general applicability of data parallelism, but it is important to understand that there are a variety of data parallel programming models available. Some of the simplest forms can only be used on very regular problems, but the most flexible models are capable of dealing with a variety of different kinds of irregularities, and are equivalent in expressive power to task parallelism.

The SIMD (Single Instruction, Multiple Data) model is the simplest data parallel model but is also the most limited. In this model, a sequence of operations is applied in parallel to all the elements of a collection of data, such as an array or set. A naive implementation of this model is not very efficient on modern memory-constrained architectures, since it reads and writes memory for each simple operation. In practice, several operations should be combined together into a more arithmetically intense kernel, and the kernel should be unrolled and vectorized to exploit instruction-level parallelism as well as multicore parallelism.

Even so, the basic SIMD model cannot handle irregularities of control or data access. It cannot, for instance, avoid doing unnecessary work, since every element of the data collection will have exactly the same sequence of operations applied. If there are special cases, such as boundary conditions, that require more or less work, the SIMD model cannot take advantage of this fact, and has to do the worst-case computation all the time. This can degrade performance unacceptably.

The SPMD (Single Program, Multiple Data) model is better. In this model, every kernel can also include control flow, which allows a kernel to do more or less work, as the situation demands. This type of model can handle irregularity in workload, but also requires a more sophisticated runtime that can move heavier parts of the workload to more lightly loaded cores.

Collective operations can be added to this model to support irregularity in communication and data access. A general scatter/gather collective operation can handle any irregular memory access pattern, but as a parallel operation. The combination of an SPMD model for kernels with scatter/gather is equivalent in computational power to threading, but is more structured and more naturally leads to the massive parallelism required for performance. It also has certain advantages in safety; for example, it is impossible to express programs with deadlock in this model. Certain refinements to this model are possible, for example it can be extended to nested or recursive parallelism, but even without these refinements it is applicable to a wide range of applications, as has been shown by extensive research over the last twenty years.

Finally, we come to the problem of programming mechanisms. Efficient implementation of a program on a parallel computer requires the coordinated generation of low-level machine language to exploit instruction level parallelism as well as a high-level runtime to support such operations as load balancing. This is because, as pointed out above, processors actually support multiple parallelism mechanism over a range of scales, and exploiting them all simultaneously is crucial for performance.

Many parallel programming languages have been devised, but these systems are not in wide use, and most existing application code is written using languages such as C and C++ that do not natively support parallelism. Tuned parallel libraries can be used, but these are only suitable for the most common stereotypical tasks, and even library writers need something to program with. Frameworks can also be used, but these typically will only address one level of parallelism at once, such as multiple cores, and cannot coordinate code generation with the runtime, since one is unaware of the other.

In developing the RapidMind platform, we have taken a different approach. We start with a programming model, SPMD data-parallelism, that we know is both general and efficient. We provide access to this from existing C++ compilers, but without using the native C++ code generator: instead we provide our own, so that the generated code can be coordinated with the runtime. This allows us to exploit multiple granularities and mechanisms for parallelism simultaneously. The simplicity of the SPMD model means that the programmer can continue to work with familiar concepts, like functions and arrays, but can also directly express parallel algorithms in a natural and efficient way. We have also been able to map this programming model to widely divergent architectures with excellent performance, including GPUs, the Cell BE, and of course multicore CPUs. This portability is useful today but is also crucial in order to future-proof application code against likely changes in processor architectures. Our system takes a high-level abstraction of parallelism and maps it to what is available, and can do so efficiently.

In summary, efficient performance on modern multicore processors requires an aggressive approach to parallelism. There are many performance mechanisms in modern processors, including but not limited to multiple cores, that depend on parallelism. In addition, memory bandwidth and latency can severely degrade performance if not managed, but “spare” parallelism can be used to hide latency. Data-parallel programming models can be used to express the required level of parallelism but also to expose coherent memory access patterns, which can be used to optimize memory bandwidth. A sufficiently general data-parallel computational model, such as the SPMD model, is as powerful as a task-parallel programming model, so no generality is lost in using this more efficient and scalable approach. Finally, the fact that this model is capable of providing portability means that application logic can be decoupled from hardware deployment, providing more choices to the software developer and providing a measure of security that their code will continue to perform well on future massively multicore processors.

—–

About the Author

Michael McCool is an Associate Professor at the University of Waterloo and co-founder of RapidMind. He continues to perform research within the Computer Graphics Lab at the University of Waterloo. Professor McCool has a diverse set of published papers, and his research interests include high-quality real-time rendering, global and local illumination, hardware algorithms, parallel computing, reconfigurable computing, interval and Monte Carlo methods and applications, end-user programming and metaprogramming, image and signal processing, and sampling. Michael has degrees in Computer Engineering and Computer Science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This