ASC Labs Create Unified Strategy to Add HPC Capacity

By Michael Feldman

October 5, 2007

On Tuesday, Appro announced the win of a $26.1 million government contract to deliver eight Linux clusters to three DOE National Nuclear Security Administration (NNSA) weapons laboratories. Starting next month, Lawrence Livermore National Laboratory, Los Alamos National Laboratory and Sandia National Laboratories will begin deploying the new Appro Xtreme-X high performance clusters. The quad-core Opteron-based systems will provide an aggregate performance of 438 teraflops and will be used to provide capacity computing for the NNSA’s Advanced Simulation and Computing (ASC) and Stockpile Stewardship Program.

In 1995, the ASC was conceived to support the NNSA’s mission of maintaining the country’s nuclear arsenal without the benefit of underground nuclear testing. By shifting almost entirely to a compute-based program, the NNSA began an enormous effort to modernize their simulation codes in order to provide a virtual testbed for weapons analysis and certification. Prior to 1995, each of the three laboratories — Lawrence Livermore, Sandia, and Los Alamos — purchased their own computer systems based on site-specific schedules and budgets. With the inception of the ASC program, the three labs began to coordinate their efforts more closely.

The Appro contract is significant because, for the first time, the ASC labs have teamed up to purchase and deploy a number of systems with a single architecture and a standard software stack. According to Mark Seager, ASC lead for Lawrence Livermore, “This is an historic procurement. It’s the first time the Tri-Lab community has aggregated its requirements and bought a single set of high performance computing resources for all three sites.”

This unified purchasing strategy reverses the natural tendency for the labs to buy a diverse range of systems using separate procurements. The reason for the change of heart: money. Under a very limited budget, the program needed to increase their capacity computing systems by an order of magnitude. The labs came to the conclusion it would more efficient to band together, and instead of doing six separate procurements over the next two years — one per lab per year — they would do a single procurement for the entire two-year period.

To achieve the level of cost reduction the ASC program was going after, the procurement was designed around a single hardware design point, called a “Scalable Unit” (SU). Based on the scalable unit module, multiple clusters of varying sizes can be built. By making a volume purchase of scalable units, the ASC program is looking to achieve an economy of scale similar to that of purchasing a single large system.

Each SU consists of 144 four-socket, quad-core Opteron nodes, hooked together with DDR InfiniBand. Each node comes with 32 GB of memory. The initial procurement consists of 21 SUs spread out over eight clusters: three for Lawrence Livermore (8 SU, 2 SU, and 1 SU systems), two for Los Alamos (two 2 SU systems), and three for Sandia (three 2 SU systems, one of which will be housed at Lawrence Livermore). The ASC labs have the option to purchase an additional 10 SUs, valued at $15.8 million.

The basis of this strategy is that the SU can be used as a highly replicated unit to build clusters of different cluster sizes, depending upon programmatic requirements. Systems ranging in size from 1 SU to 16 SU are fair game, although the largest one planned is the 8 SU, 162 teraflop cluster at Lawrence Livermore. If constructed, a 16 SU system would approach Blue Gene/L in raw computational performance.

But the idea is not to compete with capability machines. The clusters are slated for the day-to-day computing work of the ASC program, such as algorithm development. This type of work typically does not require supercomputing scalability and often uses 2D (rather than 3D) calculations or has some of the physics code turned off. Once the algorithms are developed, they’re scaled up, integrated into full simulations and run on one of the ASC supercomputers — Blue Gene/L and ASC Purple at Lawrence Livermore, Red Storm at Sandia, or ASC Q at Los Alamos. These applications may run for months at a time on these big machines, making those systems unavailable for algorithm development.

As it turns out, the capacity requirements of the ASC program are now on the same order of magnitude as their capability requirements, FLOP-wise. A lot of this can be attributed to the success of the ASC program in delivering simulation codes that can scale to 100 teraflops or more, and thus fully utilize the existing capability machines. Some physical weapons testing is still done, but it’s very expensive. As a result, economics is pushing the government to do more virtual weapons testing, which is causing an acute demand for compute resources. Since the capability machines are in such demand for fully-scaled simulation runs, the more compute cycles that can be placed on the less expensive capacity systems, the better.

In addition to the SU hardware reference platform, the procurement also defined a common software stack, which consists of Red Hat Enterprise Linux (RHEL5U1), the OpenFabrics Enterprise Distribution InfiniBand stack, MVAPICH and Open-MPI, and the MOAB/SLURM resource manager. A common set of Fortran, C and C++ development tools are also specified. The site-specific software components include the parallel file system, as well as the RAS and system monitoring software.

Cost reduction comes from a number of areas. Because of the size of the procurement, the vendors are able to reduce their costs and pass them along to the buyer. The economies of scale apply to both component and system vendors. And since all the systems are based on the same architecture, integrating and deploying them should be simplified. In fact, last year Appro installed three clusters of the same architecture at Lawrence Livermore under the Peloton procurement. Experience with those installations is expected to reduce individual cluster deployments to just six weeks or less.

Once deployed, operational costs should be reduced as well, since support expertise can be amortized throughout the Tri-Lab community. The common hardware and software environment streamlines the support structure in dealing with bugs, spare parts and system maintenance. Seager said the application developers will be especially happy to have the same hardware at all three sites.

Overall, the ASC bean counters estimate they’re reducing their total cost of ownership by 30 to 50 percent relative to their normal practices. Since Linux clusters are already 50 percent less expensive than their high-end capability machines like Purple and Blue Gene, the reduced TCO is very compelling.

This is all good news for Appro (as well as contract co-awardees Mellanox and Voltaire), who beat out five other vendors to win the Tri-Lab procurement. According to Seager, the other bidders were spread out over tier 1, tier 2 and tier 3 system vendors. He noted that the tier 1 vendors tended to be well-qualified, but too expensive. On the other hand, the tier 3 vendors presented too much risk; apparently some just delivered PowerPoint slides for their bid. Seager said technical innovation was not an important criteria in this case; they were looking for ease of operation and rapid deployment.

By contrast, the ASC capability systems are all about innovation. Seager said for these best of breed machines, they are quite willing to accept greater levels of risk that this level of technology brings. And while they might be tempted to employ a unified purchasing model for their capability systems, it turns out not to be very practical.

“We can’t afford to purchase multiple of these machines in any one year or even successively over two years,” explained Seager. “This is a significantly different model than what we are doing for capacity systems with the [Tri-Lab procurement]. Unfortunately, most of the basic insights that we leveraged for lower TCO on the highly replicated, multiple cluster procurement don’t hold for capability systems.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This