ASC Labs Create Unified Strategy to Add HPC Capacity

By Michael Feldman

October 5, 2007

On Tuesday, Appro announced the win of a $26.1 million government contract to deliver eight Linux clusters to three DOE National Nuclear Security Administration (NNSA) weapons laboratories. Starting next month, Lawrence Livermore National Laboratory, Los Alamos National Laboratory and Sandia National Laboratories will begin deploying the new Appro Xtreme-X high performance clusters. The quad-core Opteron-based systems will provide an aggregate performance of 438 teraflops and will be used to provide capacity computing for the NNSA’s Advanced Simulation and Computing (ASC) and Stockpile Stewardship Program.

In 1995, the ASC was conceived to support the NNSA’s mission of maintaining the country’s nuclear arsenal without the benefit of underground nuclear testing. By shifting almost entirely to a compute-based program, the NNSA began an enormous effort to modernize their simulation codes in order to provide a virtual testbed for weapons analysis and certification. Prior to 1995, each of the three laboratories — Lawrence Livermore, Sandia, and Los Alamos — purchased their own computer systems based on site-specific schedules and budgets. With the inception of the ASC program, the three labs began to coordinate their efforts more closely.

The Appro contract is significant because, for the first time, the ASC labs have teamed up to purchase and deploy a number of systems with a single architecture and a standard software stack. According to Mark Seager, ASC lead for Lawrence Livermore, “This is an historic procurement. It’s the first time the Tri-Lab community has aggregated its requirements and bought a single set of high performance computing resources for all three sites.”

This unified purchasing strategy reverses the natural tendency for the labs to buy a diverse range of systems using separate procurements. The reason for the change of heart: money. Under a very limited budget, the program needed to increase their capacity computing systems by an order of magnitude. The labs came to the conclusion it would more efficient to band together, and instead of doing six separate procurements over the next two years — one per lab per year — they would do a single procurement for the entire two-year period.

To achieve the level of cost reduction the ASC program was going after, the procurement was designed around a single hardware design point, called a “Scalable Unit” (SU). Based on the scalable unit module, multiple clusters of varying sizes can be built. By making a volume purchase of scalable units, the ASC program is looking to achieve an economy of scale similar to that of purchasing a single large system.

Each SU consists of 144 four-socket, quad-core Opteron nodes, hooked together with DDR InfiniBand. Each node comes with 32 GB of memory. The initial procurement consists of 21 SUs spread out over eight clusters: three for Lawrence Livermore (8 SU, 2 SU, and 1 SU systems), two for Los Alamos (two 2 SU systems), and three for Sandia (three 2 SU systems, one of which will be housed at Lawrence Livermore). The ASC labs have the option to purchase an additional 10 SUs, valued at $15.8 million.

The basis of this strategy is that the SU can be used as a highly replicated unit to build clusters of different cluster sizes, depending upon programmatic requirements. Systems ranging in size from 1 SU to 16 SU are fair game, although the largest one planned is the 8 SU, 162 teraflop cluster at Lawrence Livermore. If constructed, a 16 SU system would approach Blue Gene/L in raw computational performance.

But the idea is not to compete with capability machines. The clusters are slated for the day-to-day computing work of the ASC program, such as algorithm development. This type of work typically does not require supercomputing scalability and often uses 2D (rather than 3D) calculations or has some of the physics code turned off. Once the algorithms are developed, they’re scaled up, integrated into full simulations and run on one of the ASC supercomputers — Blue Gene/L and ASC Purple at Lawrence Livermore, Red Storm at Sandia, or ASC Q at Los Alamos. These applications may run for months at a time on these big machines, making those systems unavailable for algorithm development.

As it turns out, the capacity requirements of the ASC program are now on the same order of magnitude as their capability requirements, FLOP-wise. A lot of this can be attributed to the success of the ASC program in delivering simulation codes that can scale to 100 teraflops or more, and thus fully utilize the existing capability machines. Some physical weapons testing is still done, but it’s very expensive. As a result, economics is pushing the government to do more virtual weapons testing, which is causing an acute demand for compute resources. Since the capability machines are in such demand for fully-scaled simulation runs, the more compute cycles that can be placed on the less expensive capacity systems, the better.

In addition to the SU hardware reference platform, the procurement also defined a common software stack, which consists of Red Hat Enterprise Linux (RHEL5U1), the OpenFabrics Enterprise Distribution InfiniBand stack, MVAPICH and Open-MPI, and the MOAB/SLURM resource manager. A common set of Fortran, C and C++ development tools are also specified. The site-specific software components include the parallel file system, as well as the RAS and system monitoring software.

Cost reduction comes from a number of areas. Because of the size of the procurement, the vendors are able to reduce their costs and pass them along to the buyer. The economies of scale apply to both component and system vendors. And since all the systems are based on the same architecture, integrating and deploying them should be simplified. In fact, last year Appro installed three clusters of the same architecture at Lawrence Livermore under the Peloton procurement. Experience with those installations is expected to reduce individual cluster deployments to just six weeks or less.

Once deployed, operational costs should be reduced as well, since support expertise can be amortized throughout the Tri-Lab community. The common hardware and software environment streamlines the support structure in dealing with bugs, spare parts and system maintenance. Seager said the application developers will be especially happy to have the same hardware at all three sites.

Overall, the ASC bean counters estimate they’re reducing their total cost of ownership by 30 to 50 percent relative to their normal practices. Since Linux clusters are already 50 percent less expensive than their high-end capability machines like Purple and Blue Gene, the reduced TCO is very compelling.

This is all good news for Appro (as well as contract co-awardees Mellanox and Voltaire), who beat out five other vendors to win the Tri-Lab procurement. According to Seager, the other bidders were spread out over tier 1, tier 2 and tier 3 system vendors. He noted that the tier 1 vendors tended to be well-qualified, but too expensive. On the other hand, the tier 3 vendors presented too much risk; apparently some just delivered PowerPoint slides for their bid. Seager said technical innovation was not an important criteria in this case; they were looking for ease of operation and rapid deployment.

By contrast, the ASC capability systems are all about innovation. Seager said for these best of breed machines, they are quite willing to accept greater levels of risk that this level of technology brings. And while they might be tempted to employ a unified purchasing model for their capability systems, it turns out not to be very practical.

“We can’t afford to purchase multiple of these machines in any one year or even successively over two years,” explained Seager. “This is a significantly different model than what we are doing for capacity systems with the [Tri-Lab procurement]. Unfortunately, most of the basic insights that we leveraged for lower TCO on the highly replicated, multiple cluster procurement don’t hold for capability systems.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ABB Upgrades Produce Up to 30 Percent Energy Reduction for HPE Supercomputers

June 6, 2020

The world’s supercomputers are currently allied in a common goal: defeating COVID-19. To analyze the billions upon billions of molecules that might produce helpful therapeutics (or even a vaccine), an unimaginable amou Read more…

By Oliver Peckham

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This