Cluster Lust

By Michael Feldman

October 5, 2007

The combination of quad-core Opterons and DDR Infiniband is re-landscaping the HPC terrain and is propelling the largest clusters to the top of the high performance heap. A rash of recent announcements of big system purchases suggests good times ahead for HPC cluster vendors.

Or does it? Let’s look at the good news first.

In the space of five days, over 500 teraflops of systems were announced — all, coincidentally, for DOE labs. Last Friday, the Pacific Northwest National Laboratory (PNNL) revealed it had purchased a 163 teraflop HP Proliant server cluster. Then on Tuesday, Appro announced it had been awarded a contract to deliver 438 teraflops of computing hardware to three other DOE labs — Lawrence Livermore, Los Alamos and Sandia. Add this to the 500 teraflop Ranger system currently being installed at the Texas Advanced Computing Center (TACC) and you have over a petaflop computing power — all based on the new quad-core Opterons and DDR InfiniBand technology.

The Appro contract will result in eight new Linux clusters for the National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program, which supports the NNSA’s mission to maintain the country’s nuclear weapons. Three clusters are headed to Lawrence Livermore, two to Los Alamos and the remaining three to Sandia. Of these, the largest is a 162 teraflop machine for Livermore. The contract also contains an option for perhaps three additional clusters, representing 200 additional teraflops.

Prior to this, Appro had a presence at all ASC DOE labs, but nothing on this scale at Los Alamos and Sandia. The company’s large three-cluster Peloton deployment at Livermore in 2006 was just a prelude to this week’s ASC award. It’s a huge win for Appro.

The contract also represents a new approach to purchasing computing resources by the ASC program, which chose to make a single large purchase for its capacity computing requirements for the next two years, instead of six smaller purchases over the same time period. Our feature article this week delves more deeply into the new clusters and the strategy behind the unified procurement for the three labs.

HP’s 163 petaflop cluster, headed to PNNL in Richland, Washington, is just one of two 100-plus teraflop systems that the company will be delivering over the next year. The PNNL system will be used to drive the lab’s molecular science research in applications such as aerosol formation, bioremediation, catalysis, climate change and hydrogen storage. The machine will be deployed in two phases and won’t be fully operational until September 2008. The other system, a 182 teraflop blade-based cluster for an unnamed Swedish government agency, is expected to be fully operational as early as next month. That could give HP a more respectable presence in the top 10 of the Top500 list. The current top-ranked HP system is the 20.5 teraflop ASCI Q machine at number 62.

The dynamic duo of multicore x86 processors and InfiniBand should give clusters a real boost over the next few years. At least in raw performance, the top commodity-based clusters are now on par with the fastest high-end supercomputers from Cray and IBM. Until the petaflop-class XT and Blue Gene/P systems come online, the capability machines and the scaled-out clusters will vie for peak performance leadership. And while these clusters may not provide the same level of sustained application performance as their more expensive supercomputing brethren, their price-performance is about twice as good.

But the sub-100 teraflop cluster market is where the real market action is, and these systems are just getting less expensive and more popular every day. This makes them an increasingly attractive proposition for a wide range of users, which in turn makes them an increasingly attractive proposition for a wide range of vendors.

In a sense, that’s the bad news. The promise of a fast growing market has attracted an abundance of companies. In general, the HPC cluster market is now over-served. There are a lot of cluster vendors out there without much fundamental product differentiation among them. Standard 64-bit x86 processors and InfiniBand interconnect technology have become the basis for hundreds of cluster computing offerings. These two elements — compute and communications — dominate how well a cluster performs.

Companies that have broken out of this mold, like SiCortex and (to a certain extent) Liquid Computing, have come up with truly innovative solutions that are unlike the traditional model. The challenge for them is gaining a foothold in a market that is risk-averse and extremely price sensitive. These companies have chosen a tough path, but at least they avoid direct competition with the 50 other system vendors selling what are essentially the same boxes.

To be fair, for the more mainstream cluster offerings, product differentiation does exist in technology, customization options, configuration, support, service, software bundling, storage offerings, etc., and these elements are all being applied for competitive advantage. But sometimes these advantages are only temporary. Rackable created a unique line of x86-based systems, with innovative power and cooling technology at competitive price points. Then everyone jumped onto the power/cooling bandwagon, dulling the benefit of Rackable’s offerings and making them easy prey to aggressive pricing by Dell and HP. More recently, Rackable is fighting back with a mobile datacenter called Concentro, designed to go up against Sun Microsystems’ new Blackbox offering. The lesson here is that vendors copy good ideas from each other to the extent possible, which, over time, marginalizes competitive advantages.

Since the HPC market — and more specifically, the HPC cluster market — is growing at double-digit rates, there has been little pressure for consolidation. Rapid growth is not conductive to the “normal” maturation process of eliminating weaker competitors and products. But I suspect the next sustained economic contraction will change that. With signs of inflation and rising interest rates starting to appear, an economic slowdown, if not full-blown recession, could happen next year.

Even in the absence of a deteriorating economy, there is constant pressure on buyers to look for purchasing efficiencies. The ASC program procurement strategy, mentioned above, is one such example. It could provide a model for how large organizations will buy high performance computing in the future. In the ASC case, the labs were specifically not looking for innovative computing. They already bought that in their high-end supercomputer systems, typified by Lawrence Livermore’s Blue Gene/L. What they were looking for was a standard, replicable architecture for capacity computing that they could buy in bulk. But by replacing a number of smaller purchases with one large one, they explicitly limited the number of vendors in the ASC program.

Overall, the larger tier 1 system vendors seem to be least at risk, since they can offer more complete solutions, better support and a variety of services. They sell the same product lines into a broad customer base in both HPC and traditional enterprise computing. On the other hand, they are often less able to compete on price. The tier 3 shops fill a need for users looking for a one-night stand in high performance computing and can offer rock bottom prices. Tier 2 vendors provide an attractive middle ground, as was the case for the ASC procurement.

Whether market forces thin the herd quickly, through a recession, or more slowly, via a steady maturation of the ecosystem, depends upon future economic conditions. Over the long term, the larger vendors are going to be the most resilient. The smaller companies with narrower customer bases are already looking over their shoulder. Whatever the situation, if you’re an x86 system vendor, hang on to your clusters. It’s going to be a bumpy ride.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This