Cluster Lust

By Michael Feldman

October 5, 2007

The combination of quad-core Opterons and DDR Infiniband is re-landscaping the HPC terrain and is propelling the largest clusters to the top of the high performance heap. A rash of recent announcements of big system purchases suggests good times ahead for HPC cluster vendors.

Or does it? Let’s look at the good news first.

In the space of five days, over 500 teraflops of systems were announced — all, coincidentally, for DOE labs. Last Friday, the Pacific Northwest National Laboratory (PNNL) revealed it had purchased a 163 teraflop HP Proliant server cluster. Then on Tuesday, Appro announced it had been awarded a contract to deliver 438 teraflops of computing hardware to three other DOE labs — Lawrence Livermore, Los Alamos and Sandia. Add this to the 500 teraflop Ranger system currently being installed at the Texas Advanced Computing Center (TACC) and you have over a petaflop computing power — all based on the new quad-core Opterons and DDR InfiniBand technology.

The Appro contract will result in eight new Linux clusters for the National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program, which supports the NNSA’s mission to maintain the country’s nuclear weapons. Three clusters are headed to Lawrence Livermore, two to Los Alamos and the remaining three to Sandia. Of these, the largest is a 162 teraflop machine for Livermore. The contract also contains an option for perhaps three additional clusters, representing 200 additional teraflops.

Prior to this, Appro had a presence at all ASC DOE labs, but nothing on this scale at Los Alamos and Sandia. The company’s large three-cluster Peloton deployment at Livermore in 2006 was just a prelude to this week’s ASC award. It’s a huge win for Appro.

The contract also represents a new approach to purchasing computing resources by the ASC program, which chose to make a single large purchase for its capacity computing requirements for the next two years, instead of six smaller purchases over the same time period. Our feature article this week delves more deeply into the new clusters and the strategy behind the unified procurement for the three labs.

HP’s 163 petaflop cluster, headed to PNNL in Richland, Washington, is just one of two 100-plus teraflop systems that the company will be delivering over the next year. The PNNL system will be used to drive the lab’s molecular science research in applications such as aerosol formation, bioremediation, catalysis, climate change and hydrogen storage. The machine will be deployed in two phases and won’t be fully operational until September 2008. The other system, a 182 teraflop blade-based cluster for an unnamed Swedish government agency, is expected to be fully operational as early as next month. That could give HP a more respectable presence in the top 10 of the Top500 list. The current top-ranked HP system is the 20.5 teraflop ASCI Q machine at number 62.

The dynamic duo of multicore x86 processors and InfiniBand should give clusters a real boost over the next few years. At least in raw performance, the top commodity-based clusters are now on par with the fastest high-end supercomputers from Cray and IBM. Until the petaflop-class XT and Blue Gene/P systems come online, the capability machines and the scaled-out clusters will vie for peak performance leadership. And while these clusters may not provide the same level of sustained application performance as their more expensive supercomputing brethren, their price-performance is about twice as good.

But the sub-100 teraflop cluster market is where the real market action is, and these systems are just getting less expensive and more popular every day. This makes them an increasingly attractive proposition for a wide range of users, which in turn makes them an increasingly attractive proposition for a wide range of vendors.

In a sense, that’s the bad news. The promise of a fast growing market has attracted an abundance of companies. In general, the HPC cluster market is now over-served. There are a lot of cluster vendors out there without much fundamental product differentiation among them. Standard 64-bit x86 processors and InfiniBand interconnect technology have become the basis for hundreds of cluster computing offerings. These two elements — compute and communications — dominate how well a cluster performs.

Companies that have broken out of this mold, like SiCortex and (to a certain extent) Liquid Computing, have come up with truly innovative solutions that are unlike the traditional model. The challenge for them is gaining a foothold in a market that is risk-averse and extremely price sensitive. These companies have chosen a tough path, but at least they avoid direct competition with the 50 other system vendors selling what are essentially the same boxes.

To be fair, for the more mainstream cluster offerings, product differentiation does exist in technology, customization options, configuration, support, service, software bundling, storage offerings, etc., and these elements are all being applied for competitive advantage. But sometimes these advantages are only temporary. Rackable created a unique line of x86-based systems, with innovative power and cooling technology at competitive price points. Then everyone jumped onto the power/cooling bandwagon, dulling the benefit of Rackable’s offerings and making them easy prey to aggressive pricing by Dell and HP. More recently, Rackable is fighting back with a mobile datacenter called Concentro, designed to go up against Sun Microsystems’ new Blackbox offering. The lesson here is that vendors copy good ideas from each other to the extent possible, which, over time, marginalizes competitive advantages.

Since the HPC market — and more specifically, the HPC cluster market — is growing at double-digit rates, there has been little pressure for consolidation. Rapid growth is not conductive to the “normal” maturation process of eliminating weaker competitors and products. But I suspect the next sustained economic contraction will change that. With signs of inflation and rising interest rates starting to appear, an economic slowdown, if not full-blown recession, could happen next year.

Even in the absence of a deteriorating economy, there is constant pressure on buyers to look for purchasing efficiencies. The ASC program procurement strategy, mentioned above, is one such example. It could provide a model for how large organizations will buy high performance computing in the future. In the ASC case, the labs were specifically not looking for innovative computing. They already bought that in their high-end supercomputer systems, typified by Lawrence Livermore’s Blue Gene/L. What they were looking for was a standard, replicable architecture for capacity computing that they could buy in bulk. But by replacing a number of smaller purchases with one large one, they explicitly limited the number of vendors in the ASC program.

Overall, the larger tier 1 system vendors seem to be least at risk, since they can offer more complete solutions, better support and a variety of services. They sell the same product lines into a broad customer base in both HPC and traditional enterprise computing. On the other hand, they are often less able to compete on price. The tier 3 shops fill a need for users looking for a one-night stand in high performance computing and can offer rock bottom prices. Tier 2 vendors provide an attractive middle ground, as was the case for the ASC procurement.

Whether market forces thin the herd quickly, through a recession, or more slowly, via a steady maturation of the ecosystem, depends upon future economic conditions. Over the long term, the larger vendors are going to be the most resilient. The smaller companies with narrower customer bases are already looking over their shoulder. Whatever the situation, if you’re an x86 system vendor, hang on to your clusters. It’s going to be a bumpy ride.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire