Panasas Invents ‘Tiered Parity’

By Michael Feldman

October 12, 2007

In 1988 Garth Gibson at the University of California, Berkeley, co-authored a paper titled “A Case for Redundant Arrays of Inexpensive Disks (RAID) [PDF],” which outlined the basic principles of using big, cheap disks to increase data reliability and I/O performance. RAID went on to become a widely adopted storage technology throughout the industry, while Gibson co-founded Panasas Inc., a storage cluster vendor for high performance computing applications.

This week, Gibson and company claim that they have implemented the most significant extension to disk array data reliability since the original RAID paradigm was developed. Their new architecture is called “tiered parity.” In this model, Panasas has built “vertical parity” and “network parity” on top of their existing RAID 5 “horizontal parity” implementation.

The RAID 5 approach, as it was outlined in the original paper, consists of striping data and parity across multiple disks. It enables error recovery for single disk failures and increases performance via parallel reads and writes. This technology is widely used in storage systems today. Panasas’ own implementation of RAID 5, called “ObjectRAID,” is based on storage objects rather than blocks. The added intelligence is designed to reduce reconstruction times when a disk failure occurs.

But no RAID 5 technology can handle a media error, also know as an unrecoverable read error (URE), if it occurs during reconstruction of a failed disk. When this occurs, the RAID data cannot be rebuilt from disk; a backup (usually on tape) has to be used to recover the entire array. Ten years ago, this wasn’t a serious problem. With 50 GB SATA disk drives, a media error was very unlikely to occur while reading a single disk, since the rate of failure is about one error every 10^14 bits (12.5 terabytes), a rate that has remained constant for over a decade. And when a media error did happen to occur during reconstruction, a 50 GB disk took only a few hours to recover from tape.

Times have changed. Disks have become much bigger and denser. Capacities of 500 to 750 GB are common today, and one terabyte disks will soon be the norm. That means when a disk goes south, the odds of hitting a media error during recovery are much greater, and recovery from tape can take days or weeks.

Imagine a RAID array of seven 1 TB disks. When one disk fails, the chances of hitting a URE while recovering the data from the six remaining disks is now about 50/50. When two terabyte disks hit the market in 2009, the disk failure plus media error scenario becomes almost a sure bet. Recovering the storage array from backup tape could take a month. For high end computing applications that use tens or hundreds of terabytes of data, this would be a disaster.

“I think what people are becoming aware of is that the data integrity provided by RAID 5 is basically no longer sufficient,” says Robin Harris, senior analyst at Data Mobility Group. “RAID 5 will only protect across a single disk failure, so it’s going away as a [standalone] data protection strategy.”

To address this problem, Panasas invented vertical parity. Essentially, they’ve added RAID within each disk, by generating a parity sector from the other sectors. The local parity sector can be used to recompute the missing data in case of a media error. According to Panasas, vertical parity gets the error rate down to between one in 10^18 and one in 10^19, which is 1000 to 10,000 times better than the URE rate. The extra parity information uses 10 percent of the disk capacity, but Panasas claims there is no performance hit. So scalability is built in.

A word here should be said about RAID 6 technology (also known as double parity), which some vendors use for an additional level of data protection. This scheme was designed to guard against a double disk failure, which it does. Sort of. The problem is that RAID 6 doesn’t protect against subsequent media errors after the second disk goes down, which, as discussed above, is becoming increasingly more likely. Here, it has the same problem as RAID 5. However, RAID 6 can be used to recover from the single disk failure plus media error scenario. But the performance hit for dual parity compared to single parity is significant. So it’s a mixed bag and doesn’t directly address the media error problem.

On top of its horizonal and vertical parity schemes, Panasas has added an additional layer of network parity protection. At this level, parity checking is done on the client side, to make sure the data delivered by the storage system wasn’t corrupted on its way to the user. Because of increasing I/O bandwidth and the number of hardware and software components between the external data and the application, there are increasing opportunities for good data to go bad. Firmware, server hardware, server software, network components and transmission media can all potentially mangle valid data unbeknownst to the application. With network parity, the client receives an error notification when bad data is detected.

The tiered parity technology will be included in the next version of Panasas’ ActiveScale operating environment, version 3.2. The beta will be out next month and will be generally available by the end of the year. The additional parity levels can be turned off if the user believes they’re not needed for a particular environment. According to Panasas, the tiered parity technology doesn’t exact a performance hit on top of the existing RAID 5 implementation, but, as stated above, the vertical scheme does eat an additional 10 percent of the storage — that’s in addition to the 10 percent used by the RAID 5 implementation.

Although the overall concepts of the three-tiered architecture are fairly general, Panasas is attempting to protect its new invention. “We actually have a patent pending on this tiered parity concept, particularly the vertical parity,” says Larry Jones, VP of Marketing at Panasas. “Could someone copy it? Who knows? But we are trying to protect this specific idea.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes (March 2017)

March 1, 2017

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Intel Sets High Bar with Workforce Diversity Program Results

February 28, 2017

Intel’s impressive efforts to achieve workforce diversity and compensation equality edged up yet another notch last year according to the company’s 2016 Diversity and Inclusion Report released today. Read more…

By John Russell

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This