Panasas Invents ‘Tiered Parity’

By Michael Feldman

October 12, 2007

In 1988 Garth Gibson at the University of California, Berkeley, co-authored a paper titled “A Case for Redundant Arrays of Inexpensive Disks (RAID) [PDF],” which outlined the basic principles of using big, cheap disks to increase data reliability and I/O performance. RAID went on to become a widely adopted storage technology throughout the industry, while Gibson co-founded Panasas Inc., a storage cluster vendor for high performance computing applications.

This week, Gibson and company claim that they have implemented the most significant extension to disk array data reliability since the original RAID paradigm was developed. Their new architecture is called “tiered parity.” In this model, Panasas has built “vertical parity” and “network parity” on top of their existing RAID 5 “horizontal parity” implementation.

The RAID 5 approach, as it was outlined in the original paper, consists of striping data and parity across multiple disks. It enables error recovery for single disk failures and increases performance via parallel reads and writes. This technology is widely used in storage systems today. Panasas’ own implementation of RAID 5, called “ObjectRAID,” is based on storage objects rather than blocks. The added intelligence is designed to reduce reconstruction times when a disk failure occurs.

But no RAID 5 technology can handle a media error, also know as an unrecoverable read error (URE), if it occurs during reconstruction of a failed disk. When this occurs, the RAID data cannot be rebuilt from disk; a backup (usually on tape) has to be used to recover the entire array. Ten years ago, this wasn’t a serious problem. With 50 GB SATA disk drives, a media error was very unlikely to occur while reading a single disk, since the rate of failure is about one error every 10^14 bits (12.5 terabytes), a rate that has remained constant for over a decade. And when a media error did happen to occur during reconstruction, a 50 GB disk took only a few hours to recover from tape.

Times have changed. Disks have become much bigger and denser. Capacities of 500 to 750 GB are common today, and one terabyte disks will soon be the norm. That means when a disk goes south, the odds of hitting a media error during recovery are much greater, and recovery from tape can take days or weeks.

Imagine a RAID array of seven 1 TB disks. When one disk fails, the chances of hitting a URE while recovering the data from the six remaining disks is now about 50/50. When two terabyte disks hit the market in 2009, the disk failure plus media error scenario becomes almost a sure bet. Recovering the storage array from backup tape could take a month. For high end computing applications that use tens or hundreds of terabytes of data, this would be a disaster.

“I think what people are becoming aware of is that the data integrity provided by RAID 5 is basically no longer sufficient,” says Robin Harris, senior analyst at Data Mobility Group. “RAID 5 will only protect across a single disk failure, so it’s going away as a [standalone] data protection strategy.”

To address this problem, Panasas invented vertical parity. Essentially, they’ve added RAID within each disk, by generating a parity sector from the other sectors. The local parity sector can be used to recompute the missing data in case of a media error. According to Panasas, vertical parity gets the error rate down to between one in 10^18 and one in 10^19, which is 1000 to 10,000 times better than the URE rate. The extra parity information uses 10 percent of the disk capacity, but Panasas claims there is no performance hit. So scalability is built in.

A word here should be said about RAID 6 technology (also known as double parity), which some vendors use for an additional level of data protection. This scheme was designed to guard against a double disk failure, which it does. Sort of. The problem is that RAID 6 doesn’t protect against subsequent media errors after the second disk goes down, which, as discussed above, is becoming increasingly more likely. Here, it has the same problem as RAID 5. However, RAID 6 can be used to recover from the single disk failure plus media error scenario. But the performance hit for dual parity compared to single parity is significant. So it’s a mixed bag and doesn’t directly address the media error problem.

On top of its horizonal and vertical parity schemes, Panasas has added an additional layer of network parity protection. At this level, parity checking is done on the client side, to make sure the data delivered by the storage system wasn’t corrupted on its way to the user. Because of increasing I/O bandwidth and the number of hardware and software components between the external data and the application, there are increasing opportunities for good data to go bad. Firmware, server hardware, server software, network components and transmission media can all potentially mangle valid data unbeknownst to the application. With network parity, the client receives an error notification when bad data is detected.

The tiered parity technology will be included in the next version of Panasas’ ActiveScale operating environment, version 3.2. The beta will be out next month and will be generally available by the end of the year. The additional parity levels can be turned off if the user believes they’re not needed for a particular environment. According to Panasas, the tiered parity technology doesn’t exact a performance hit on top of the existing RAID 5 implementation, but, as stated above, the vertical scheme does eat an additional 10 percent of the storage — that’s in addition to the 10 percent used by the RAID 5 implementation.

Although the overall concepts of the three-tiered architecture are fairly general, Panasas is attempting to protect its new invention. “We actually have a patent pending on this tiered parity concept, particularly the vertical parity,” says Larry Jones, VP of Marketing at Panasas. “Could someone copy it? Who knows? But we are trying to protect this specific idea.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire