SiCortex Machine Gets Warm Reception at Argonne

By Michael Feldman

October 19, 2007

On Monday, the Department of Energy’s (DOE’s) Argonne National Laboratory became the proud owners of the first SiCortex SC5832 system deployed in the field. Introduced in November 2006, the SC5832, along with its smaller sibling, the SC648, represent a new approach to high performance computing. The SiCortex machines have garnered a good deal of critical acclaim over the past year, but this will be the first time the community will be able to see one operate with real applications. The 5.8 teraflop machine will be operated by Argonne’s Mathematics and Computer Science (MCS) Division to further its mission in researching and developing software for high performance computing architectures.

The SiCortex architecture represents a departure from the traditional commodity cluster computing model. The company has custom engineered everything from the chips to the chassis to produce something more akin to a mini-supercomputer than an HPC cluster. The SC5832 is comprised of 5832 MIPS64 cores, each dissipating just 600 milliwatts of power. Each processor node consists of 6 MIPS64 cores, two DDR-2 memory controllers, a DMA engine, a PCI Express I/O controller and an internode fabric switch. There are no cables to speak of; the nodes communicate via the backplane.

To the application user, it appears to be a conventional HPC system, with the Linux operating system and the traditional MPI interface. Its MIPS64 foundation is hidden beneath the SiCortex PathScale compiler. The architecture’s main claim to fame is its low power consumption. The SC5832 needs just 18 kilowatts. Even clusters based on the newest energy-sipping quad-core Opterons will need somewhere north of 28 kilowatts for the same 5.8 teraflops.

According to the team at Argonne, the SC5832 was a slam-dunk to install. The machine came in the door on Monday morning and was assembled and up running within two and a half hours. “Of all the new machine installations I have been through here at Argonne, this was by far the smoothest,” said Narayan Desai, Argonne National Laboratory systems engineer. The whole system takes up just over 130 cubic feet of space — about the size of four large refrigerators.

The unique attributes of the SiCortex machine were a big draw for Argonne, a lab with a reputation for trying out innovative hardware. Concurrent with the SiCortex deployment, Argonne’s new Blue Gene/P system is also in the process of being installed. Both systems represent different scales of similar approaches, namely creating high levels of performance with large numbers of low-power RISC processors, hooked together with a high bandwidth communication fabric. As such, these systems achieve exceptional performance-per-watt, something Argonne and other DOE labs are becoming increasingly focused on.

“Here at Argonne, we’ve been exploring and pushing the envelope with aggressive machines, but our end goal is really to be fielding systems that are energy efficient,” explains Pete Beckman, computer scientist with Argonne’s MCS Division. “As we scale up to exaflops, computing power can’t scale up in the same way as it has in the past. We certainly won’t be able to have 40 megawatt machine rooms. The SiCortex and Blue Gene/P machines both represent this new model of lower power, more cores, improved fault tolerance and RAS to enable petascale computing and beyond.”

Both machines will be used to support the MCS Division’s research in parallel computing. But while the Blue Gene/P machine is primarily an evolution of the Blue Gene/L architecture, the SiCortex system is being evaluated as a new architecture to replace conventional HPC clusters. Part of that evaluation will be to determine the feasibility of retargeting traditional cluster applications to the SC5832.

This could offer a few challenges. Compared to conventional x86-based systems of similar performance, the SiCortex machine contains many more processor cores. Since SiCortex has made the tradeoff of replacing relatively power-hungry x86 cores (8 GLOPS/core for a 2 GHz Opteron) with low-power MIPS64 cores (1 GLOPS/core for a 0.5 GHz processor), they need about eight times as many cores to achieve the equivalent raw performance. That means the software has to be able to scale to greater levels to take advantage of the larger number of processing units. A traditional fat-node cluster architecture is also likely to have more memory per processor than the more Blue Gene-like SiCortex architecture. Cluster applications that have made liberal use of memory may need to distribute their data more intelligently to run in this new environment.

If one’s codes are already running on a 2000-plus node cluster or an IBM Blue Gene type machine, then the software is likely to be scaled to these levels already. Argonne, being a leadership computing facility with a lot of Blue Gene experience, has plenty of highly parallelized code. By Wednesday, Argonne users were already running applications on the newly installed SiCortex machine, in some cases using more than 90 percent of the SC5832’s cores. These applications included nek5000 (fluid dynamics) on 24 cores, FLASH (astrophysics) on 5832 cores, PETSc (PDE library) on 5802 cores, and Pneo (neuroscience) on 3600 cores. Although the groups that own these codes have their own production machines at the lab, they were grateful to grab some cycles on the new SiCortex system. Other “standard” applications were also exercised, including HPL on 5776 cores, NAMD on 4800 cores, and POP on 4324 cores.

One of the more compelling characteristics of the SiCortex systems is that it’s almost completely open source. All the system software components, including the MPI library (Argonne’s MPICH, actually), the operating system (Linux), the drivers for the machine’s communication fabric, and the resource management system, are accessible to the user. By contrast, many cluster vendors offer more tightly integrated solutions, which include proprietary implementations of their software stack — the vendor’s so-called secret sauce. SiCortex seems convinced that by opening up the system, the HPC user community will be encouraged to build up the software ecosystem around its new architecture.

The Argonne folks love the open source approach. It means they can replace components and patch the software as easily as with their own codes. According to Ewing (Rusty) Lusk, director of Argonne’s MCS Division, for research purposes, the open source model is ideal for them. He says they’ve already replaced a few Linux system components for their own customization of the software stack. As a result, the system will be able to do quick network booting via the Parallel Virtual File System (PVFS).

“These guys have really drunk the Kool-Aid on open source,” says Lusk. “Every aspect of the source code, except perhaps the innards of the PathScale compiler itself, is open source. In terms of having a machine that you can look at, understand and replace parts of, there couldn’t be anything better.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This