SiCortex Machine Gets Warm Reception at Argonne

By Michael Feldman

October 19, 2007

On Monday, the Department of Energy’s (DOE’s) Argonne National Laboratory became the proud owners of the first SiCortex SC5832 system deployed in the field. Introduced in November 2006, the SC5832, along with its smaller sibling, the SC648, represent a new approach to high performance computing. The SiCortex machines have garnered a good deal of critical acclaim over the past year, but this will be the first time the community will be able to see one operate with real applications. The 5.8 teraflop machine will be operated by Argonne’s Mathematics and Computer Science (MCS) Division to further its mission in researching and developing software for high performance computing architectures.

The SiCortex architecture represents a departure from the traditional commodity cluster computing model. The company has custom engineered everything from the chips to the chassis to produce something more akin to a mini-supercomputer than an HPC cluster. The SC5832 is comprised of 5832 MIPS64 cores, each dissipating just 600 milliwatts of power. Each processor node consists of 6 MIPS64 cores, two DDR-2 memory controllers, a DMA engine, a PCI Express I/O controller and an internode fabric switch. There are no cables to speak of; the nodes communicate via the backplane.

To the application user, it appears to be a conventional HPC system, with the Linux operating system and the traditional MPI interface. Its MIPS64 foundation is hidden beneath the SiCortex PathScale compiler. The architecture’s main claim to fame is its low power consumption. The SC5832 needs just 18 kilowatts. Even clusters based on the newest energy-sipping quad-core Opterons will need somewhere north of 28 kilowatts for the same 5.8 teraflops.

According to the team at Argonne, the SC5832 was a slam-dunk to install. The machine came in the door on Monday morning and was assembled and up running within two and a half hours. “Of all the new machine installations I have been through here at Argonne, this was by far the smoothest,” said Narayan Desai, Argonne National Laboratory systems engineer. The whole system takes up just over 130 cubic feet of space — about the size of four large refrigerators.

The unique attributes of the SiCortex machine were a big draw for Argonne, a lab with a reputation for trying out innovative hardware. Concurrent with the SiCortex deployment, Argonne’s new Blue Gene/P system is also in the process of being installed. Both systems represent different scales of similar approaches, namely creating high levels of performance with large numbers of low-power RISC processors, hooked together with a high bandwidth communication fabric. As such, these systems achieve exceptional performance-per-watt, something Argonne and other DOE labs are becoming increasingly focused on.

“Here at Argonne, we’ve been exploring and pushing the envelope with aggressive machines, but our end goal is really to be fielding systems that are energy efficient,” explains Pete Beckman, computer scientist with Argonne’s MCS Division. “As we scale up to exaflops, computing power can’t scale up in the same way as it has in the past. We certainly won’t be able to have 40 megawatt machine rooms. The SiCortex and Blue Gene/P machines both represent this new model of lower power, more cores, improved fault tolerance and RAS to enable petascale computing and beyond.”

Both machines will be used to support the MCS Division’s research in parallel computing. But while the Blue Gene/P machine is primarily an evolution of the Blue Gene/L architecture, the SiCortex system is being evaluated as a new architecture to replace conventional HPC clusters. Part of that evaluation will be to determine the feasibility of retargeting traditional cluster applications to the SC5832.

This could offer a few challenges. Compared to conventional x86-based systems of similar performance, the SiCortex machine contains many more processor cores. Since SiCortex has made the tradeoff of replacing relatively power-hungry x86 cores (8 GLOPS/core for a 2 GHz Opteron) with low-power MIPS64 cores (1 GLOPS/core for a 0.5 GHz processor), they need about eight times as many cores to achieve the equivalent raw performance. That means the software has to be able to scale to greater levels to take advantage of the larger number of processing units. A traditional fat-node cluster architecture is also likely to have more memory per processor than the more Blue Gene-like SiCortex architecture. Cluster applications that have made liberal use of memory may need to distribute their data more intelligently to run in this new environment.

If one’s codes are already running on a 2000-plus node cluster or an IBM Blue Gene type machine, then the software is likely to be scaled to these levels already. Argonne, being a leadership computing facility with a lot of Blue Gene experience, has plenty of highly parallelized code. By Wednesday, Argonne users were already running applications on the newly installed SiCortex machine, in some cases using more than 90 percent of the SC5832’s cores. These applications included nek5000 (fluid dynamics) on 24 cores, FLASH (astrophysics) on 5832 cores, PETSc (PDE library) on 5802 cores, and Pneo (neuroscience) on 3600 cores. Although the groups that own these codes have their own production machines at the lab, they were grateful to grab some cycles on the new SiCortex system. Other “standard” applications were also exercised, including HPL on 5776 cores, NAMD on 4800 cores, and POP on 4324 cores.

One of the more compelling characteristics of the SiCortex systems is that it’s almost completely open source. All the system software components, including the MPI library (Argonne’s MPICH, actually), the operating system (Linux), the drivers for the machine’s communication fabric, and the resource management system, are accessible to the user. By contrast, many cluster vendors offer more tightly integrated solutions, which include proprietary implementations of their software stack — the vendor’s so-called secret sauce. SiCortex seems convinced that by opening up the system, the HPC user community will be encouraged to build up the software ecosystem around its new architecture.

The Argonne folks love the open source approach. It means they can replace components and patch the software as easily as with their own codes. According to Ewing (Rusty) Lusk, director of Argonne’s MCS Division, for research purposes, the open source model is ideal for them. He says they’ve already replaced a few Linux system components for their own customization of the software stack. As a result, the system will be able to do quick network booting via the Parallel Virtual File System (PVFS).

“These guys have really drunk the Kool-Aid on open source,” says Lusk. “Every aspect of the source code, except perhaps the innards of the PathScale compiler itself, is open source. In terms of having a machine that you can look at, understand and replace parts of, there couldn’t be anything better.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This