SiCortex Machine Gets Warm Reception at Argonne

By Michael Feldman

October 19, 2007

On Monday, the Department of Energy’s (DOE’s) Argonne National Laboratory became the proud owners of the first SiCortex SC5832 system deployed in the field. Introduced in November 2006, the SC5832, along with its smaller sibling, the SC648, represent a new approach to high performance computing. The SiCortex machines have garnered a good deal of critical acclaim over the past year, but this will be the first time the community will be able to see one operate with real applications. The 5.8 teraflop machine will be operated by Argonne’s Mathematics and Computer Science (MCS) Division to further its mission in researching and developing software for high performance computing architectures.

The SiCortex architecture represents a departure from the traditional commodity cluster computing model. The company has custom engineered everything from the chips to the chassis to produce something more akin to a mini-supercomputer than an HPC cluster. The SC5832 is comprised of 5832 MIPS64 cores, each dissipating just 600 milliwatts of power. Each processor node consists of 6 MIPS64 cores, two DDR-2 memory controllers, a DMA engine, a PCI Express I/O controller and an internode fabric switch. There are no cables to speak of; the nodes communicate via the backplane.

To the application user, it appears to be a conventional HPC system, with the Linux operating system and the traditional MPI interface. Its MIPS64 foundation is hidden beneath the SiCortex PathScale compiler. The architecture’s main claim to fame is its low power consumption. The SC5832 needs just 18 kilowatts. Even clusters based on the newest energy-sipping quad-core Opterons will need somewhere north of 28 kilowatts for the same 5.8 teraflops.

According to the team at Argonne, the SC5832 was a slam-dunk to install. The machine came in the door on Monday morning and was assembled and up running within two and a half hours. “Of all the new machine installations I have been through here at Argonne, this was by far the smoothest,” said Narayan Desai, Argonne National Laboratory systems engineer. The whole system takes up just over 130 cubic feet of space — about the size of four large refrigerators.

The unique attributes of the SiCortex machine were a big draw for Argonne, a lab with a reputation for trying out innovative hardware. Concurrent with the SiCortex deployment, Argonne’s new Blue Gene/P system is also in the process of being installed. Both systems represent different scales of similar approaches, namely creating high levels of performance with large numbers of low-power RISC processors, hooked together with a high bandwidth communication fabric. As such, these systems achieve exceptional performance-per-watt, something Argonne and other DOE labs are becoming increasingly focused on.

“Here at Argonne, we’ve been exploring and pushing the envelope with aggressive machines, but our end goal is really to be fielding systems that are energy efficient,” explains Pete Beckman, computer scientist with Argonne’s MCS Division. “As we scale up to exaflops, computing power can’t scale up in the same way as it has in the past. We certainly won’t be able to have 40 megawatt machine rooms. The SiCortex and Blue Gene/P machines both represent this new model of lower power, more cores, improved fault tolerance and RAS to enable petascale computing and beyond.”

Both machines will be used to support the MCS Division’s research in parallel computing. But while the Blue Gene/P machine is primarily an evolution of the Blue Gene/L architecture, the SiCortex system is being evaluated as a new architecture to replace conventional HPC clusters. Part of that evaluation will be to determine the feasibility of retargeting traditional cluster applications to the SC5832.

This could offer a few challenges. Compared to conventional x86-based systems of similar performance, the SiCortex machine contains many more processor cores. Since SiCortex has made the tradeoff of replacing relatively power-hungry x86 cores (8 GLOPS/core for a 2 GHz Opteron) with low-power MIPS64 cores (1 GLOPS/core for a 0.5 GHz processor), they need about eight times as many cores to achieve the equivalent raw performance. That means the software has to be able to scale to greater levels to take advantage of the larger number of processing units. A traditional fat-node cluster architecture is also likely to have more memory per processor than the more Blue Gene-like SiCortex architecture. Cluster applications that have made liberal use of memory may need to distribute their data more intelligently to run in this new environment.

If one’s codes are already running on a 2000-plus node cluster or an IBM Blue Gene type machine, then the software is likely to be scaled to these levels already. Argonne, being a leadership computing facility with a lot of Blue Gene experience, has plenty of highly parallelized code. By Wednesday, Argonne users were already running applications on the newly installed SiCortex machine, in some cases using more than 90 percent of the SC5832’s cores. These applications included nek5000 (fluid dynamics) on 24 cores, FLASH (astrophysics) on 5832 cores, PETSc (PDE library) on 5802 cores, and Pneo (neuroscience) on 3600 cores. Although the groups that own these codes have their own production machines at the lab, they were grateful to grab some cycles on the new SiCortex system. Other “standard” applications were also exercised, including HPL on 5776 cores, NAMD on 4800 cores, and POP on 4324 cores.

One of the more compelling characteristics of the SiCortex systems is that it’s almost completely open source. All the system software components, including the MPI library (Argonne’s MPICH, actually), the operating system (Linux), the drivers for the machine’s communication fabric, and the resource management system, are accessible to the user. By contrast, many cluster vendors offer more tightly integrated solutions, which include proprietary implementations of their software stack — the vendor’s so-called secret sauce. SiCortex seems convinced that by opening up the system, the HPC user community will be encouraged to build up the software ecosystem around its new architecture.

The Argonne folks love the open source approach. It means they can replace components and patch the software as easily as with their own codes. According to Ewing (Rusty) Lusk, director of Argonne’s MCS Division, for research purposes, the open source model is ideal for them. He says they’ve already replaced a few Linux system components for their own customization of the software stack. As a result, the system will be able to do quick network booting via the Parallel Virtual File System (PVFS).

“These guys have really drunk the Kool-Aid on open source,” says Lusk. “Every aspect of the source code, except perhaps the innards of the PathScale compiler itself, is open source. In terms of having a machine that you can look at, understand and replace parts of, there couldn’t be anything better.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This