SiCortex Machine Gets Warm Reception at Argonne

By Michael Feldman

October 19, 2007

On Monday, the Department of Energy’s (DOE’s) Argonne National Laboratory became the proud owners of the first SiCortex SC5832 system deployed in the field. Introduced in November 2006, the SC5832, along with its smaller sibling, the SC648, represent a new approach to high performance computing. The SiCortex machines have garnered a good deal of critical acclaim over the past year, but this will be the first time the community will be able to see one operate with real applications. The 5.8 teraflop machine will be operated by Argonne’s Mathematics and Computer Science (MCS) Division to further its mission in researching and developing software for high performance computing architectures.

The SiCortex architecture represents a departure from the traditional commodity cluster computing model. The company has custom engineered everything from the chips to the chassis to produce something more akin to a mini-supercomputer than an HPC cluster. The SC5832 is comprised of 5832 MIPS64 cores, each dissipating just 600 milliwatts of power. Each processor node consists of 6 MIPS64 cores, two DDR-2 memory controllers, a DMA engine, a PCI Express I/O controller and an internode fabric switch. There are no cables to speak of; the nodes communicate via the backplane.

To the application user, it appears to be a conventional HPC system, with the Linux operating system and the traditional MPI interface. Its MIPS64 foundation is hidden beneath the SiCortex PathScale compiler. The architecture’s main claim to fame is its low power consumption. The SC5832 needs just 18 kilowatts. Even clusters based on the newest energy-sipping quad-core Opterons will need somewhere north of 28 kilowatts for the same 5.8 teraflops.

According to the team at Argonne, the SC5832 was a slam-dunk to install. The machine came in the door on Monday morning and was assembled and up running within two and a half hours. “Of all the new machine installations I have been through here at Argonne, this was by far the smoothest,” said Narayan Desai, Argonne National Laboratory systems engineer. The whole system takes up just over 130 cubic feet of space — about the size of four large refrigerators.

The unique attributes of the SiCortex machine were a big draw for Argonne, a lab with a reputation for trying out innovative hardware. Concurrent with the SiCortex deployment, Argonne’s new Blue Gene/P system is also in the process of being installed. Both systems represent different scales of similar approaches, namely creating high levels of performance with large numbers of low-power RISC processors, hooked together with a high bandwidth communication fabric. As such, these systems achieve exceptional performance-per-watt, something Argonne and other DOE labs are becoming increasingly focused on.

“Here at Argonne, we’ve been exploring and pushing the envelope with aggressive machines, but our end goal is really to be fielding systems that are energy efficient,” explains Pete Beckman, computer scientist with Argonne’s MCS Division. “As we scale up to exaflops, computing power can’t scale up in the same way as it has in the past. We certainly won’t be able to have 40 megawatt machine rooms. The SiCortex and Blue Gene/P machines both represent this new model of lower power, more cores, improved fault tolerance and RAS to enable petascale computing and beyond.”

Both machines will be used to support the MCS Division’s research in parallel computing. But while the Blue Gene/P machine is primarily an evolution of the Blue Gene/L architecture, the SiCortex system is being evaluated as a new architecture to replace conventional HPC clusters. Part of that evaluation will be to determine the feasibility of retargeting traditional cluster applications to the SC5832.

This could offer a few challenges. Compared to conventional x86-based systems of similar performance, the SiCortex machine contains many more processor cores. Since SiCortex has made the tradeoff of replacing relatively power-hungry x86 cores (8 GLOPS/core for a 2 GHz Opteron) with low-power MIPS64 cores (1 GLOPS/core for a 0.5 GHz processor), they need about eight times as many cores to achieve the equivalent raw performance. That means the software has to be able to scale to greater levels to take advantage of the larger number of processing units. A traditional fat-node cluster architecture is also likely to have more memory per processor than the more Blue Gene-like SiCortex architecture. Cluster applications that have made liberal use of memory may need to distribute their data more intelligently to run in this new environment.

If one’s codes are already running on a 2000-plus node cluster or an IBM Blue Gene type machine, then the software is likely to be scaled to these levels already. Argonne, being a leadership computing facility with a lot of Blue Gene experience, has plenty of highly parallelized code. By Wednesday, Argonne users were already running applications on the newly installed SiCortex machine, in some cases using more than 90 percent of the SC5832’s cores. These applications included nek5000 (fluid dynamics) on 24 cores, FLASH (astrophysics) on 5832 cores, PETSc (PDE library) on 5802 cores, and Pneo (neuroscience) on 3600 cores. Although the groups that own these codes have their own production machines at the lab, they were grateful to grab some cycles on the new SiCortex system. Other “standard” applications were also exercised, including HPL on 5776 cores, NAMD on 4800 cores, and POP on 4324 cores.

One of the more compelling characteristics of the SiCortex systems is that it’s almost completely open source. All the system software components, including the MPI library (Argonne’s MPICH, actually), the operating system (Linux), the drivers for the machine’s communication fabric, and the resource management system, are accessible to the user. By contrast, many cluster vendors offer more tightly integrated solutions, which include proprietary implementations of their software stack — the vendor’s so-called secret sauce. SiCortex seems convinced that by opening up the system, the HPC user community will be encouraged to build up the software ecosystem around its new architecture.

The Argonne folks love the open source approach. It means they can replace components and patch the software as easily as with their own codes. According to Ewing (Rusty) Lusk, director of Argonne’s MCS Division, for research purposes, the open source model is ideal for them. He says they’ve already replaced a few Linux system components for their own customization of the software stack. As a result, the system will be able to do quick network booting via the Parallel Virtual File System (PVFS).

“These guys have really drunk the Kool-Aid on open source,” says Lusk. “Every aspect of the source code, except perhaps the innards of the PathScale compiler itself, is open source. In terms of having a machine that you can look at, understand and replace parts of, there couldn’t be anything better.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire