NEC Does Some Vector Addition

By Michael Feldman

November 2, 2007

Last Thursday, NEC announced its sixth generation vector supercomputer, the SX-9, which the company is touting as the “worlds fastest vector supercomputer.” The company says the new machine will be twice as energy-efficient as the SX-8R generation. The SX-9 is based on a new 100 gigaflop vector processor, sixteen of which are placed in a node. In addition to the new vector processor, the SX-9 supports up to one terabyte of shared memory per node and an internode interconnect of up to 128 GB/second. At its maximum configuration of 512 nodes, the SX-9 would deliver a peak vector performance of 839 teraflops.

Before I go any further, I should point out that to the best of my knowledge, no such machine is being built — or ever will be. According to Thomas Schoenemeyer, HPC Presales Manager, NEC GmbH, nothing near the size of an 839 teraflop system is in the pipeline. NEC has orders for two systems in Europe. One is headed to the German Weather Service (DWD); the other to Meteo France. The German system, which will deliver 39 teraflops, and, coincidentally, costs 39 million euros (72 million dollars), is scheduled to be fully operational in 2010. The Meteo France system is also expected to be a sub-100 teraflop machine. This week, the company also announced an order from Japan’s Tohoku University for a 26 teraflop system. NEC plans to ship bigger SX-9 systems down the road, but they don’t expect to be challenging petaflop supercomputers in the foreseeable future.

“We are not going to be on the top of the TOP500 list with this system,” admits Schoenemeyer. “Our focus is the productivity of the customer.”

An 839 teraflop SX-9 would probably cost in the neighborhood of a billion dollars. So despite what you might have read elsewhere, the top systems from Cray and IBM are unlikely to be challenged by a maxed out SX-9 machine anytime soon. The last NEC machine to achieve TOP500 notoriety was the 36 teraflop Earth Simulator, a SX-6 generation system that was ranked the most powerful machine in the world from 2002 to 2004, before IBM Blue Gene/L overtook it.

Like its forebearers, the SX-9 is targeted to weather forecasting service facilities, climate research centers, and other government science centers. NEC has sold over 1000 SX systems over the past two decades — the vast majority in Japan and Europe, although there are some outliers in Australia, South Africa, and Brazil. There are virtually none in North America.

The way NEC is happily churning out vector supercomputers, one might get the impression that weather and climate modeling is a growth industry. While global warming is certainly a big topic these days, such research is unlikely to propel SX-9 production into the double-digit growth rates enjoyed by the overall HPC market.

But unlike in North America, Japan and Europe have a decent-sized installed base of vector machines and the vast majority of them are NEC supers. Although most of the 1000-plus NEC vector machines sold over the last two decades have been retired, a lot of Japanese and European Earth science centers still run on SX systems. NEC is hoping many of these organizations will upgrade to the SX-9 at some point and keep the legacy going.

SX-8 applications are upwardly compatible with SX-9 (binary compatible), so the software upgrade path should be painless. NEC maintains its own compiler for the vector processors, as well as a Super-UX Unix OS to enable applications to fully utilize the large flat memory architecture and powerful processors. Both OpenMP and MPI  parallelism are supported. It’s this kind of end-to-end support that has allowed NEC to maintain, and even grow, its customer base for more than two decades.

In the recent past, Cray has had some success with its X1 and X1E vector machines (Warsaw University, Spain’s National Institute of Meteorology, Korea Meteorological Administration). But today the company is penetrating the European market with its Opteron-based XT4 systems. Cray’s future strategy for its vector computing offerings will become more apparent next week.

Dedicated vector machines used to be all the rage in supercomputing, starting with the first commercial system in 1974, the CDC STAR-100. Cray soon followed with the Cray-1 in 1976. Later, NEC, Fujitsu and Hitachi each developed their own architectures. But vector supercomputing is a tough sell these days. The market share of these types of machines has been declining for some time, replaced by more general-purpose systems — both tightly coupled supercomputers and computer clusters — based on superscalar CPUs.

While HPC applications that make heavy use of a lot of matrix arithmetic, like computational fluid dynamic (CFD) codes, are well-suited to vector processors, in practice, multicore superscalar chips have proved to be a better overall technology. This is mainly because as HPC applications evolve, they become more complex, employing a greater variety of algorithms to get their job done. This complexity manifests itself in diverse computing requirements; some parts of the code require high levels of single-threaded performance, other parts require a lot of threads, and still others benefit from lots of data parallelism. Systems based on scalar processors tend to be very good at the first two, and pretty good at the third one. Vector-based machines are really only good at data parallelism (and actually only a subset of that). Even weather modeling applications, the vector machine’s raison d’etre, require scalar processing for optimal performance.

More commodity-based vector processing solutions already exist and more are on the way. Short-vector SIMD on CPUs, like PowerPC AltiVec and x86 SSE, is a step in the direction of integrated vector capabilities. Mixing vector and scalar engines on the same dies, as has been done with the Cell BE processor, is another approach to making vector processing more mainstream. And as I wrote last week, coprocessor accelerators, like GPUs, FPGAs, and SIMD ASICs (ClearSpeed), are providing similar capabilities at a much more attractive price.

In the end, economics will choose how vector computing gets done. But the purveyors of proprietary solutions are on the wrong side of history. General-purpose commodity computing is not just here to stay, it’s here to dominate.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft, Nvidia Launch Cloud HPC

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an Infiniband network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the compa Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Governm Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This