Tales from a Trading Desk: Resiliency Made Easy

By By Mike Stolz, Vice President of Architecture, GemStone Systems

November 5, 2007

To Keep It Running, Keep It Simple

Today’s electronic world has resulted in a major shift in terms of how organizations think about resiliency. Firms of all sizes are not only faced with the challenge of determining how resilient their mission-critical systems need to be, but also how they can efficiently and cost-effectively architect a “resilient” system. With millions of dollars per minute running through electronic channels 24×7, traditional high availability and disaster recovery notions are no longer good enough.

For the past five or 10 years, high availability meant the ability to recover from a server outage within about 15 minutes. Solutions like N+1 clustering and storage area network replication were perfectly acceptable. Today, however, the recovery time associated with these high-availability schemes can cause millions of dollars in lost revenue.

To avoid a potentially massive loss in revenue and efficiency in today’s fast-moving markets, firms must significantly improve their enterprise resiliency. Continuous availability is now the acceptable level of resiliency, and it is quite common in Web-based or other electronic channels to use load-balanced, hot/hot clusters of servers to serve up the business logic. These servers typically are stateless in design, so it is easy to add or remove servers and re-balance the work load. The difficult part is designing a resiliency architecture that makes the data behind those business services hot/hot.

Meeting the Resiliency Challenge: An EDF Approach

The best way to provide nearly 100 percent uptime for data and deliver maximum resiliency is by using data management middleware to ensure there are multiple consistent copies of the active business objects in-memory at all times. As firms strive to get ever closer to 100 percent uptime and ensure resiliency, distributed data caching is gaining in popularity.

Solutions such as an enterprise data fabric (EDF) are ideal for meeting those demands. Presented as a simple HashMap API, the EDF programming paradigm is extremely simple and familiar yet delivers maximum value behind the scenes: You simply “put” your state into the HashMap and, under the covers, the middleware takes care of replicating this business object to multiple additional servers.

Sounds easy, right? It is — until you start to think about the various failure modes, guarantees around zero data loss, low latency and scalability. That’s what makes a product like an EDF worth its weight in gold. The most difficult parts of data management are resiliency, scalability, throughput, latency and dataset size — and you have to get it right. Every time.

By deploying an EDF, firms will benefit from a very fast, highly scalable distributed caching system. An EDF is designed for use in many diverse data management situations, but is especially useful for high-volume, latency-sensitive, mission-critical, transactional systems. There are several critical features to consider when evaluating an EDF, including:

  • Language neutrality. This is the ability to access the data natively from common programming languages like Java, C++ and C#.
  • Cache coherency, which is especially important in globally distributed systems.
  • Persistence/overflow so no data is ever lost regardless of circumstances.
  • Highly reliable business object replication, both synchronous and asynchronous, to multiple locations for safe, high-volume transactional environments.
  • Horizontal scalability to thousands of cache nodes.
  • A loosely coupled WAN gateway for long-haul distribution of data.
  • And all of this with continuous availability — never any unexpected down time.

So how does it work? As soon as an application puts data into the cache it is replicated synchronously to at least one additional member of the cache. It also can be replicated to additional members or written to a persistent store, but this can be done on a low priority, asynchronous thread so it doesn’t hold up mainstream processing.

Leveraging Multiple Topologies to Deliver Maximum Value

A true EDF should use three topologies in order to achieve the highest levels of reliability, scalability and speed. The first — and the backbone of the system — is the peer-to-peer topology. In this configuration, everybody knows about everybody else. If a new node joins the distributed system, everybody gets notified, and if a node leaves, everybody gets notified. This enables users to dynamically adjust distributed systems. There is no notion of a “broker” and no single point of failure; fault tolerance is designed right in.

The trouble with peer-to-peer architectures is that they have so much metadata flying around that they can only have limited scale. In most cases, this topology should only be scaled up to about 100 or 200 nodes.

Scalability can be improved by using a second type of topology — client-server — where we elect some of the peers from the peer-to-peer backbone to be servers for client applications (your business logic servers). Each server should be able to manage as many as 100 clients. As there is much less metadata overhead in this topology, it can scale to thousands of nodes.

The third topology is a WAN gateway topology, which can glue together multiple client-server distributed systems. This is an ideal way of creating an enterprise data grid that is globally distributed and appears as one large distributed system, even though it is really many distributed systems glued together.

Appropriate use of these three topologies will enable you to achieve your business requirements around recovery point objective and recovery time objective. Data is replicated across the entire distributed cache, and replication is transactional and performed at the in-memory object level. As soon as an object is put into the cache, it is replicated in-memory to at least one additional node. The data can be replicated to additional nodes either synchronously or asynchronously depending on sensitivity to latency and tolerance for data loss in the event of a catastrophic failure. Write-through to a database or other persistent store is done asynchronously as time permits. In essence, the distributed cache behaves much like RAID for the enterprise.

Additionally, the data can be actively used in both the primary and secondary sites. In fact, the only thing that typically drives the notion of one site even being primary is the external connectivity to the exchanges or ECNs.

Another factor to consider when evaluating an EDF is what we’ll term a “shared nothing” architecture. Because the data in an EDF can be mirrored across multiple nodes in a distributed cache, it eliminates the need for any type of fancy shared storage. In fact, the local disks that are on the blades themselves are often sufficient. In the event that a disk fails, only one node is taken down in the distributed system and there are other nodes alive and ready to take over that workload. Finally, the workload itself is distributed across all the nodes in the distributed system. Exchanges may be split between the two sites and clients will likely be distributed across the two sites, as everything except external connectivity is in a hot/hot configuration.

Let’s walk through the simple H/A recovery process for a single node failure: detect the failure; reconnect the clients; recovery is complete. In total, there is less than 1 second from detection of the failure to complete recovery. A little better than 15 minutes! Because the data is all in-memory in the form of business objects all the time, there is no re-booting, no re-fetching of data and no re-creation of objects.

But what about a catastrophic failure? EDF clusters are virtual, so the nodes needn’t be located close together within the datacenter — they can be on separate subnets, using separate routers, power sources, etc. In fact, some of the nodes actually can be physically located in a different site. Therefore, the notion of losing a “cluster” is non-existent; we’re actually talking about loss of an entire datacenter.

If a disaster occurs and the entire primary data-center fails, the recovery process goes like this: detect the failure; reconnect the exchange at the alternate site; reconnect the clients; recovery is complete. The typical time to recover from point of detection is around 1 second. That’s a huge difference to the typical 1-4 hour disaster recovery time common in business today!

Summary

As distributed computing deployments become the norm rather than the exception, resiliency will become one of the most critical issues facing global corporations. By using an EDF, firms can achieve nearly instantaneous recovery from outages — real business continuity — while simultaneously simplifying their architectures. This one product takes the place of an H/A solution, a shared-storage environment, storage-level replication and wide-area data distribution, removing the need to design a data resiliency architecture for mission-critical systems.

About Mike Stolz

Mike Stolz is vice president of architecture and strategy for financial services at GemStone Systems. In his role, Stolz leverages his expertise in targeting, developing and delivering innovative technology solutions to expand GemStone’s global financial services offering and cultivate its growing capital markets division. Stolz served during the last nine years as director and chief architect of Merrill Lynch’s global markets and investment banking debt division. In this role, Stolz was responsible for the design and development of trading systems and trading support systems for interest rate, credit and asset backed derivatives, as well as FX and repos and fixed income products.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire