Compilers and More: Gloptimizations

By Michael Wolfe

November 9, 2007

In my last column, I discussed the performance improvements on one of the SPEC CPU2000 floating point benchmarks, 172.mgrid, between 1999 and 2006, and introduced an optimization (which we call Loop-Carried Redundancy Elimination) that improves mgrid significantly. The SPEC CPU committee has been quite careful with benchmarks that are sensitive to compiler tricks. The original SPEC ’89 benchmark suite included 030.matrix300 (dense matrix multiplication). Since matrix multiplication is one of a set of core operations performed in many numerical applications, it was considered a good candidate for a benchmark. But, to quote Reinhold Weicker from the SPEC Newsletter (December 1995): “However, if a program becomes a benchmark, compiler authors can become very creative.”

In this case, compilers were modified to aggressively tile the loops; in each tile, the program performs a sub-matrix multiplication where the submatrices fit into the cache memory, improving the total performance by up to a factor of eight. (The term “loop tiling” or “iteration space tiling” was actually suggested by my wife in 1986; I was looking for a better term to use in a paper, she was looking at the kitchen floor.) Since this one optimization had such a big impact, and didn’t apply to the other benchmarks, the SPEC committee decided that it was not a fair contributor to an overall performance metric, and matrix300 was retired in 1992.

I noted last time that Dell had published a SPEC CPU2000 run in November 1999 on a 733 MHz Pentium III Precision Workstation 420, and another in October 2006 on a 2.66 GHz Core 2 Extreme Precision Workstation 390. I chose to compare these two runs simply because they were from the same vendor seven years apart. The base CFP2000 proved from 242 to 2679, a factor of just over 11. The big winner was 179.art, which improved from a ratio of 313 to 9306, almost a factor of 30 speedup. What accounts for this factor of 30? Can we expect similar improvements for any other program?

One way to achieve great speedups is to make the base case really slow; then, even simple optimizations can deliver a nice improvement. Sometimes, the program is written in a way that seems intentionally aimed at making it run slowly. Such a case appears in ART.

The ART benchmark (Adaptive Resonance Theory neural network for image ecognition) is written in C, and the critical loop is:

    struct{
double *I; double W, X, V, U, P, Q, R;
} * f1_layer;
double **bus;
....
for( tj = 0; tj < numf2s; tj++ ){
Y[tj].y = 0;
if( !Y[tj].reset )
for( ti = 0; ti < numf1s; ti++ )
Y[tj].y += f1_layer[ti].P * bus[ti][tj];
}

This loop appears in several places in the program, and much of the time of the program is spent in it; speed up this loop and the program runs fast.

However, there are several problems here. The struct f1_layer has 8 members, each 8 bytes long (assuming 64-bit pointers). That means each element of f1_layer takes up a whole 64-byte cache line. So while we’re traversing the array f1_layer in the inner loop, we only use one value out of each cache line. Even worse, the two-dimensional array bus is dynamically allocated, and we are traversing down the columns; that means two memory accesses (to get the row pointer bus[ti], then the value bus[ti][tj]). In both cases, the program abuses memory bandwidth in the inner loop, unless the whole dataset fits in the cache.

A few more comments: it turns out the inner loop has a trip count of about 10,000, while the outer loop has only 6 iterations, and the conditional around the inner loop never trips (reset is always 0), at least not in the benchmark datasets, so the inner loop is always executed. These facts are known only at runtime, however.

I’ve seen three ways to make this loop run much faster.  Some compilers implement what has been called the ART hack, reorganizing the data for the struct f1_layer. The array-of-struct is reorganized to become a struct of arrays. It takes the same amount of space, but now each element f1_layer[ti].P become f1_layer.P[ti], so consecutive elements are adjacent in the cache, and the performance of the cache and the whole program improves greatly.

    struct{
double **I; double *W, *X, *V, *U, *P, *Q, *R;
} f1_layer;
double **bus;
....
for( tj = 0; tj < numf2s; tj++ ){
Y[tj].y = 0;
if( !Y[tj].reset )
for( ti = 0; ti < numf1s; ti++ )
Y[tj].y += f1_layer.P[ti] * bus[ti][tj];
}

I did this by hand on an older Intel 3.4GHz EM64T Xeon, using the PGI compilers, and measured a 49% performance improvement. You can imagine what kind of whole program analysis would allow or disallow this reorganization, and it is very rarely feasible. However, this benchmark is so important that some compilers take this step. Here’s an optimization (to abuse the term) that would never have been invented if not for this particular benchmark.

A different trick is to interchange the two loops. The problem being solved is the accesses to the array bus, which are non-adjacent, have no locality, and require two loads per iteration, problems which go away if the two loops are interchanged. However, after interchanging, the new inner loop has a very short trip count (though the compiler probably doesn’t know that). The other more serious problem is that interchanging the loops brings the conditional inside both loops.

    struct{
double *I; double W, X, V, U, P, Q, R;
} * f1_layer;
double **bus;
....
for( tj = 0; tj < numf2s; tj++ )
Y[tj].y = 0;
for( ti = 0; ti < numf1s; ti++ ){
for( tj = 0; tj < numf2s; tj++ )
if( !Y[tj].reset )
Y[tj].y += f1_layer[ti].P * bus[ti][tj];
}

On the same Xeon, I measured a speedup of 2.33. However, this is quite dangerous, from a performance standpoint; instead of ‘numf2s’ conditional tests, there are now ‘numf1s*numf2s’ tests. If the test tripped at all, the modified version could execute quite a bit slower than the original. Yet, at least one compiler implements this and gets more than a factor of two improvement in the whole program, mostly due to this loop transformation.

The third trick, not implemented by any compiler (yet, that I know of), is to leave the loops the way they are and to transpose the array bus (and a similarly accessed array, tds). It turns out these arrays are dynamically allocated, but accessed in the wrong dimension. If we transpose the dimensions, the performance of this loop and the whole program really screams. On that same Xeon, I measured a speedup of 4.3.

This last is somewhat harder to implement automatically. The most severe problem is that C doesn’t really have two-dimensional arrays; to get a two-dimensional dynamic array, the program has to first allocate a one-dimensional vector of pointers. To transpose an array, the program has to allocate a vector of a different size. Purists argue that the modified program might allocate more space, and hence might run out of memory for some large datasets.

Moreover, the performance improvements are not very stable. The speedups I measured on the EM64T were 1.49 for array-of-struct reorganization, 2.3 for loop interchange, and 4.3 for for array transposition. Last month, I compared performance using an older 733MHz Intel Pentium III and a 2.66GHz Intel Core 2 Extreme. The speedups for these three optimizations on these two machines (and the EM64T) are summarized here:

       EM64T   PIII      Core2
        1.49       1.64      1.08    array-of-struct reorganization
        2.33       1.00      1.03    loop interchange
        4.34       1.19      1.48    array transpose

I am guessing that these optimizations have much less effect on the latest Core 2 because the data all fits in the much larger cache.

So, last month I discussed compiler tuning for 172.mgrid, where a new optimization improved its performance about 20%; happily, we’ve found this new feature applies in many other user applications as well. This month, I presented compiler tuning for 179.art, where aggressive optimization can improve the performance by factors (on some machines). I won’t go into the hacks, tricks, and other tuning for the other SPEC CPU2000 benchmarks; the number of compiler tricks is linearly related to the number of benchmarks.

With the increased importance of benchmark performance, compiler development teams are encouraged to aggressive (or even heroic) efforts to optimize performance on these programs. The only reason they do so is that vendors and users (and compiler product managers) place artificial importance on certain benchmark results. Yet, these optimizations, while impressive, may be of little value, or no value, or even negative value among the more general user domain, or even on the same program with different inputs. As shown here for ART, the value of the optimization may decrease to essentially zero as the architecture progresses.

Therefore, in the spirit of the Golden Raspberry award (http://www.razzies.com/) and the Ig Nobel Prizes (http://www.improbable.com/ig), I propose that we honor the most outrageous, benchmark-specific optimization with an award of its own, the Gloptimization award, or Gloppy for short. The award itself would be a pile of glop (or representation thereof), defined in my American Heritage Dictionary as “n. 1. A messy mixture, as of food. 2. Something, as writing, that is worthless. v. 1. To cover with glop. 2. To put glop on.” The award, at least, is appropriate. More credit should be given to an optimization that applies to a single benchmark; extra credit if it measureably slows down other benchmarks or applications. Posthumous awards can be proposed for optimizations that are actually removed from compilers as the targeted benchmarks are themselves retired. The optimizations mentioned above would certainly be candidates for a Gloppy, though perhaps not winners.

The lesson for customers is that standard benchmarks are valuable tools, but should not be the only or primary means of comparing system performance. The best measure is always the performance of your own applications, to which the systems and accompanying software are not specifically tuned.

SPEC (R) is a registered trademark of the Standard Performance Evaluation Corporation (http://www.spec.org/).

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This