Cray Announces Next Generation XT5 Supercomputers

By Michael Feldman

November 9, 2007

On Tuesday, Cray announced their new XT5 product family, the next generation in their flagship XT line of supercomputers, the company’s massively parallel processor (MPP) architecture based on AMD Opteron processors. The new family encompasses two machines the XT5 and the XT5h. The XT5 proper is the follow-on to the XT4, while the XT5h represents their hybrid variant. According to Cray, the new machines are capable of scaling to sustained — not peak — petaflop performance.

Like the Sun Microsystems Constellation and IBM Blue Gene/P supercomputers, the XT5 is using quad-core technology as the lever to achieve petaflop-level performance. This follows on the heels of the dramatic increase in processing power provided by dual-core processors, when they became mainstays of supercomputers in 2005. With quad-core technology now hitting its stride, the realization of sustained petaflop machines is within reach.

“We absolutely believe that this trend is going to continue, and within the next five years you’ll see million processor systems that will be equivalent to the entire TOP500 list as it exists today,” says Jan Silverman, Cray’s senior VP of Corporate Strategy and Business Development.

The trick is how to build systems so that applications can take advantage of this level of parallelism. This is Cray’s value proposition. The company’s approach is to use a mix of standard technologies, like Opteron processors and Linux, and proprietary technologies, like their SeaStar interconnect and their home-brewed vectors processors to build elite systems. In the XT5 family, they continue this tradition.

The company first introduced its Opteron-based XT line with the launch of the XT3 in 2005. The XT4 followed in 2006. Both systems were built for longevity. Anybody with an XT3 can upgrade their hardware with XT4 and XT5 parts. According to Cray, 75 percent of the deployed XT systems have already been upgraded.

Unlike the previous XTs, the XT5 runs completely under a standard Linux environment. This opens up the architecture to off-the-shelf Linux-based ISV applications — something not possible until now. On the previous XT machines, Linux ran only on the I/O nodes. The compute nodes ran Catamount, a non-standard microkernel-based OS. The default OS that runs on the XT5 compute nodes is actually an ultra-lightweight version of SUSE Linux that doesn’t contain the I/O kernel and other system services. The idea is to unburden the OS from a lot of interrupt handling in order to achieve maximum computational performance. As it turns out though, many ISV codes assume a full Linux implementation. If the user needs to run those applications, Linux functionality is added back in, but at some cost in performance.

Silverman says customers who want to run ISV applications will be willing to take the performance hit of a fatter OS for the convenience of using off-the-shelf software. Applications that don’t need all the Linux goodies can run on nodes with the stripped down version. This is a different model than is used by traditional clusters, where a fully configured Linux runs on each node.

An XT5 cabinet contains 768 Opteron cores and delivers about 7 peak teraflops, while consuming something in the neighborhood of 42 KW. A 43 teraflop system could fit into just six cabinets. To achieve this same level of performance, an XT3 system takes 120 cabinets. But it’s not just about peak teraflops. The system is designed for scalability so that you don’t get diminishing returns as you add more compute muscle.

Maybe the architecture’s most important technology for enabling scalability is its 6-port SeaStar router, the basis of Cray’s 3D Torus high performance interconnect. The version in XT5 is SeaStar2+, which the company says has 30 percent greater performance than the SeaStar2 router on the XT4 blade. But since the SeaStar2+ connects to two Opteron chips, versus one for the SeaStar2, the XT4 blade actually offers a better communication/compute ratio than the newer XT5.

Fortunately, XT4 blades can be installed in XT5 cabinets in any combination with XT5 blades. In a lot of cases, the XT4 blades still make sense, since the one-to-one SeaStar-Opteron connection is better for applications where communication bandwidth is paramount. The XT5 blade would be the better choice for CPU-intensive workloads or where the applications can benefit from the additional memory within the node (32 GB for the XT5, versus 8 KB for the XT4).

Since the new machine runs Linux, Cray is planning to attract commercial users that want to run ISV applications at a scale beyond what a typical cluster solution could provide. Automobile crash-test simulations that model the complex interaction between cars and humans is one such example. This represents part of Cray’s strategy to move beyond the research centers and government labs. With the high reliability they believe they’ve achieved in the second and third generation XT4 and XT5, Cray is now positioning these machines for operational work. One example is the 5 teraflop XT4 system used by MeteoSwiss for its around-the-clock weather forecasting.

The other half of the XT5 family, the XT5h, is the architecture that includes vector processor blades and FPGA blades. The XT5h replaces Cray’s FPGA-equipped XD1 product and X1E vector machines. The new machine offers the ability to utilize multiple compute architectures, as well as support global memory programming. It represents a significant step toward Cray’s goal of offering adaptive computing systems. Adaptive computing is a model intended to optimize both programmer productivity and computing resources by enabling software components to run on the most suitable hardware available in the system. This XT5h platform represents Cray’s first integrated hybrid computing architecture for heterogeneous computing.

The FPGA blade, called XR1, is made up of two pairs of Opteron processors hooked up, via HyperTransport, to two DRC-supplied Reconfigurable Processor Units (RPU). According to Cray, this tight processor coupling ensures low latency and high-bandwidth communication between the processing elements, allowing users to scale applications to thousands of FPGAs.

The vector blade, called the X2, has four high-bandwidth, 25 gigaflop vector CPUs, along with 64 GB of shared memory, implemented as a four-way SMP. Each X2 node delivers more than 100 gigaflops (peak), and the system can be scaled to 1,024 shared memory processors with 16 terabytes of globally addressable memory. These blades go into dedicated vector processing cabinets, which are connected via the SeaStar network to at least one XT5 cabinet, which itself may be minimally configured.

Because of the global memory architecture of the X2, partitioned global address space (PGAS) languages like Co-Array Fortran (CAF) and Unified Parallel C (UPC) may be used. These languages allow developers to take advantage of the shared memory architecture of the X2. In some cases, you can achieve an order of magnitude improvements in both programmer productivity and runtime performance when compared to the MPI model. Silverman believes customers will buy the vector blades just to use the global memory architecture, whether or not they want to use the vector processors themselves.

The UK’s High End Computing Terascale Resource (HECToR) is Cray’s first hybrid deployment. The current machine consists of XT4 cabinets. They’ll be adding an XT5h vector computing cabinet, which will hooked up to the current system as soon the X2 hardware becomes available in 2008.

An application well-suited to hybrid architectures is climate simulation. The model consists of three main components: the atmosphere, the ocean, and the land. It turns out the atmosphere portion of the model is very well suited to scalar CPUs, like Opterons. But the ocean portion of the model can be easily vectorized and also benefits greatly from the high bandwidth memory access. The land model is also suited to scalar CPUs, but some sections of the code can be accelerated by offloading it to FPGAs.

“So the idea is that you would optimize this whole job by putting the right set of application pieces on the processor that can best execute the code, rather than try to fit everything into one architecture,” explains Silverman. “That, in a nutshell, is the benefit of a hybrid machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This