Cray Announces Next Generation XT5 Supercomputers

By Michael Feldman

November 9, 2007

On Tuesday, Cray announced their new XT5 product family, the next generation in their flagship XT line of supercomputers, the company’s massively parallel processor (MPP) architecture based on AMD Opteron processors. The new family encompasses two machines the XT5 and the XT5h. The XT5 proper is the follow-on to the XT4, while the XT5h represents their hybrid variant. According to Cray, the new machines are capable of scaling to sustained — not peak — petaflop performance.

Like the Sun Microsystems Constellation and IBM Blue Gene/P supercomputers, the XT5 is using quad-core technology as the lever to achieve petaflop-level performance. This follows on the heels of the dramatic increase in processing power provided by dual-core processors, when they became mainstays of supercomputers in 2005. With quad-core technology now hitting its stride, the realization of sustained petaflop machines is within reach.

“We absolutely believe that this trend is going to continue, and within the next five years you’ll see million processor systems that will be equivalent to the entire TOP500 list as it exists today,” says Jan Silverman, Cray’s senior VP of Corporate Strategy and Business Development.

The trick is how to build systems so that applications can take advantage of this level of parallelism. This is Cray’s value proposition. The company’s approach is to use a mix of standard technologies, like Opteron processors and Linux, and proprietary technologies, like their SeaStar interconnect and their home-brewed vectors processors to build elite systems. In the XT5 family, they continue this tradition.

The company first introduced its Opteron-based XT line with the launch of the XT3 in 2005. The XT4 followed in 2006. Both systems were built for longevity. Anybody with an XT3 can upgrade their hardware with XT4 and XT5 parts. According to Cray, 75 percent of the deployed XT systems have already been upgraded.

Unlike the previous XTs, the XT5 runs completely under a standard Linux environment. This opens up the architecture to off-the-shelf Linux-based ISV applications — something not possible until now. On the previous XT machines, Linux ran only on the I/O nodes. The compute nodes ran Catamount, a non-standard microkernel-based OS. The default OS that runs on the XT5 compute nodes is actually an ultra-lightweight version of SUSE Linux that doesn’t contain the I/O kernel and other system services. The idea is to unburden the OS from a lot of interrupt handling in order to achieve maximum computational performance. As it turns out though, many ISV codes assume a full Linux implementation. If the user needs to run those applications, Linux functionality is added back in, but at some cost in performance.

Silverman says customers who want to run ISV applications will be willing to take the performance hit of a fatter OS for the convenience of using off-the-shelf software. Applications that don’t need all the Linux goodies can run on nodes with the stripped down version. This is a different model than is used by traditional clusters, where a fully configured Linux runs on each node.

An XT5 cabinet contains 768 Opteron cores and delivers about 7 peak teraflops, while consuming something in the neighborhood of 42 KW. A 43 teraflop system could fit into just six cabinets. To achieve this same level of performance, an XT3 system takes 120 cabinets. But it’s not just about peak teraflops. The system is designed for scalability so that you don’t get diminishing returns as you add more compute muscle.

Maybe the architecture’s most important technology for enabling scalability is its 6-port SeaStar router, the basis of Cray’s 3D Torus high performance interconnect. The version in XT5 is SeaStar2+, which the company says has 30 percent greater performance than the SeaStar2 router on the XT4 blade. But since the SeaStar2+ connects to two Opteron chips, versus one for the SeaStar2, the XT4 blade actually offers a better communication/compute ratio than the newer XT5.

Fortunately, XT4 blades can be installed in XT5 cabinets in any combination with XT5 blades. In a lot of cases, the XT4 blades still make sense, since the one-to-one SeaStar-Opteron connection is better for applications where communication bandwidth is paramount. The XT5 blade would be the better choice for CPU-intensive workloads or where the applications can benefit from the additional memory within the node (32 GB for the XT5, versus 8 KB for the XT4).

Since the new machine runs Linux, Cray is planning to attract commercial users that want to run ISV applications at a scale beyond what a typical cluster solution could provide. Automobile crash-test simulations that model the complex interaction between cars and humans is one such example. This represents part of Cray’s strategy to move beyond the research centers and government labs. With the high reliability they believe they’ve achieved in the second and third generation XT4 and XT5, Cray is now positioning these machines for operational work. One example is the 5 teraflop XT4 system used by MeteoSwiss for its around-the-clock weather forecasting.

The other half of the XT5 family, the XT5h, is the architecture that includes vector processor blades and FPGA blades. The XT5h replaces Cray’s FPGA-equipped XD1 product and X1E vector machines. The new machine offers the ability to utilize multiple compute architectures, as well as support global memory programming. It represents a significant step toward Cray’s goal of offering adaptive computing systems. Adaptive computing is a model intended to optimize both programmer productivity and computing resources by enabling software components to run on the most suitable hardware available in the system. This XT5h platform represents Cray’s first integrated hybrid computing architecture for heterogeneous computing.

The FPGA blade, called XR1, is made up of two pairs of Opteron processors hooked up, via HyperTransport, to two DRC-supplied Reconfigurable Processor Units (RPU). According to Cray, this tight processor coupling ensures low latency and high-bandwidth communication between the processing elements, allowing users to scale applications to thousands of FPGAs.

The vector blade, called the X2, has four high-bandwidth, 25 gigaflop vector CPUs, along with 64 GB of shared memory, implemented as a four-way SMP. Each X2 node delivers more than 100 gigaflops (peak), and the system can be scaled to 1,024 shared memory processors with 16 terabytes of globally addressable memory. These blades go into dedicated vector processing cabinets, which are connected via the SeaStar network to at least one XT5 cabinet, which itself may be minimally configured.

Because of the global memory architecture of the X2, partitioned global address space (PGAS) languages like Co-Array Fortran (CAF) and Unified Parallel C (UPC) may be used. These languages allow developers to take advantage of the shared memory architecture of the X2. In some cases, you can achieve an order of magnitude improvements in both programmer productivity and runtime performance when compared to the MPI model. Silverman believes customers will buy the vector blades just to use the global memory architecture, whether or not they want to use the vector processors themselves.

The UK’s High End Computing Terascale Resource (HECToR) is Cray’s first hybrid deployment. The current machine consists of XT4 cabinets. They’ll be adding an XT5h vector computing cabinet, which will hooked up to the current system as soon the X2 hardware becomes available in 2008.

An application well-suited to hybrid architectures is climate simulation. The model consists of three main components: the atmosphere, the ocean, and the land. It turns out the atmosphere portion of the model is very well suited to scalar CPUs, like Opterons. But the ocean portion of the model can be easily vectorized and also benefits greatly from the high bandwidth memory access. The land model is also suited to scalar CPUs, but some sections of the code can be accelerated by offloading it to FPGAs.

“So the idea is that you would optimize this whole job by putting the right set of application pieces on the processor that can best execute the code, rather than try to fit everything into one architecture,” explains Silverman. “That, in a nutshell, is the benefit of a hybrid machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This