HPC in the Land of 24/7

By Michael Feldman

November 23, 2007

More businesses than ever are employing high performance computing capabilities to fulfill their mission-critical needs. While many of these companies aren’t using traditional technical computing, they still require a level of processing power, networking performance or storage scale that necessitates HPC assets. In most cases, the systems are not being used to produce a single answer or model a specific problem, but rather provide a continuous high performance capability for processing real-time transactions. In this type of environment, pure performance is not enough; marrying HPC with mission-critical computing is the real challenge.

Examples of such businesses include Wal-Mart, NASDAQ, and FedEx, three companies that shared their experiences with high performance computing at a Masterworks session at SC07 in Reno last week. The session was organized with the help of the Council on Competitiveness, an NGO that focuses on U.S. economic competitiveness opportunities and challenges.

NASDAQ — Speed, Cost and Reliability are Key

As executive vice president of Operations and Technology and chief information officer of NASDAQ since 2005, Anna Ewing has witnessed a rapid transformation of financial market exchanges. Although the industry is now extremely high-tech, it’s been slow to become globalized in the manner of most other industries. Here in the U.S., and even more so, in other countries, the exchanges have been maintained and protected as near monopolies by their government benefactors. Today though, the globalization of market exchanges is occurring in parallel with the rapid increase in electronic trading volume. In this environment, transaction speed, data throughput and low latency messaging are the technological features that give exchanges their competitive edge.

The most immediate challenge for NASDAQ is to keep up with the message data as electronic exchange traffic continues to skyrocket. Ewing says the exchange use to double its data traffic every year; now it’s every six months. The interconnectedness of the global markets is also stressing the system. Thanks to the near instantaneous transfer of market data, disruptive financial events quickly ripple through the world’s markets. In this volatile environment, predictability becomes a real asset and users gravitate to those exchanges where they know the trades can be executed reliably.

According to Ewing , their target is Four Nines (99.99 percent) reliability and they’ve been tracking to Five Nines (99.999 percent). Immediately after 9/11, the NASDAQ systems remained operational, thanks to a virtualized model and computing resources that were distributed across the country. But a lot of their customers were not nearly so fortunate, either because they relied on New York assets or because the redundant systems they had in place had never been tested, and didn’t perform as expected. Because of this and the general chaos of the financial environment, NASDAQ ended up voluntarily shutting down the exchange after 9/11. The lesson for NASDAQ was to include their customers in their business continuity planning and testing.

Because of the ubiquity of Internet applications and recent changes to the market regulatory framework, the barriers to automated trading have lowered dramatically. Achieving low latency market data messaging has becomes a critical feature for attracting traders. At NASDAQ, they’re constantly looking at ways for improving the messaging infrastructure to shave time off transactions. Ewing says they now can provide less than a 1 ms round-trip per message. In an effort to shave microseconds of latency from trades, some customers are collocating in NASDAQ facilities to get an edge over their competitors coming through the WAN.

“From a technology perspective, speed, reliability and low-cost are the life blood of our market,” says Ewing ” On any given day, we will process over two billion transactions at sub-millisecond speeds, at rates of over 200,000 transactions per second.”

Because of the rapidly increasing volumes of transactions, scaling their computing infrastructure becomes a continuous process, not something to be addressed every three or four years as equipment becomes obsolete. NASDAQ relies almost exclusively on commodity platforms, along with their own customized software. Using this model, over the last several years they’ve been able to reduce their cost base by 70 percent.

“There’s nothing fancy about our platforms,” explains Ewing. “It’s the software and network engineering that we perform that is, quite frankly, our core competence — our secret sauce, if you will.”

Wal-Mart — The Challenge of the 410 Billion Row Table

Nancy Stewart, senior vice president and chief technology officer of Wal-Mart Stores Inc., is in charge of the company’s infrastructure, operations and technology roadmap. That turns out to be quite a responsibility. Wal-Mart is the largest retailer in the world, a $370 billion company, whose revenue is larger than IBM, Intel, Microsoft, HP and Dell combined. The company is on track to become the first $1 trillion dollar company within the next few years.

Although Wal-Mart does not talk specifics about the scope of the computing and storage infrastructure it administers, in order to manage their inventory and supply chain, the company must process a 410 billion row table to figure out what is going to end up on its world-wide store shelves on any given day. The data has to be massaged very quickly, so that inventory control can react to real time events, like disasters, man-made supply disruptions or seasonal demand spikes. While the stores themselves may close, the company’s IT infrastructure is up 24/7.

“The value for us in using high performance computing is related to the fact that we have one of the largest data stores in the world,” says Stewart. “In terms of using that data store, in any given two hour period we have to process over two petabytes of data.”

Wal-Mart develops about 80 percent of their software in-house to maintain the level of reliability and availability that they require. When your company is netting $2 billion per hour on the day after Thanksgiving, downtime is not really an option. To work with Wal-Mart, suppliers and other partners have to match the retailer’s devotion to continuous availability. Because of the magnitude of transactions and the cash flow, Wal-Mart doesn’t maintain service level agreements (SLAs) with their computing partners. According to Stewart, none of them could afford the penalties involved with any downtime.

The ongoing problem for Wal-Mart is that their inventory management database has become so large that they’ve maxed out on their ability to handle it. The company’s application represents the “Grand Challenge” of real-time transaction processing. A trillion-row table, which they foresee in the next few years, is going to be difficult to process in real time. What they’re really looking for are predictable tools that can scale to their future needs. In truth, Stewart would prefer even faster turnaround on the inventory they currently manage.

“I really need to be able to mine the data much more quickly than I am now” admits Stewart…. “I’m not getting that today.”

FedEx — Logistics Planning on a Grand Scale

Kevin Humphries is the senior vice president of Technology Systems for FedEx Corporate Services and is responsible for setting technology direction as well as providing data center, network and field infrastructure support. The company’s computing technology orchestrates the delivery of millions of items each day around the world, using a fleet of over 600 aircraft and 75,000 motorized vehicles.

According to Humphries, the only way they’re able pull off this global logistics puzzle is to employ HPC simulation and modeling to help plan the FedEx routes. Trucks and planes have to be continually shuffled from place to place in the most efficient manner possible to make timely deliveries and to optimize resources. It’s not just a mega-version of the traveling salesman problem. In addition to the complex routing, the company has to deal with unforeseen events like weather and equipment breakdowns. On top of that, FedEx has essentially no control over shipping demand at any given time. But it’s the scope of the problem that precipitates the need for HPC.

“We have to take everything that comes our way,” says Humphries. “That creates about 30 million origin-destination pairs that have to be planned 24/7 every hour of the day, over all the assets that we own.”

The initial logistics plan for using the assets is performed with traditional HPC cluster tools well in advance of the actual shipments. As the time winds down to the day of execution, the model is continuously refined (some on grid platforms) to support a real time response. The refined model has to react to environmental conditions, like weather, mechanical breakdowns and infrastructure problems. An extremely high capacity computing environment is used to coalesce all the information in real time.

Humphries main frustration with high performance computing technology is its uniqueness. Businesses like FedEx would like to see their HPC assets seamlessly embedded into their overall enterprise infrastructure rather than have to be treated as an island of resources devoted to solving specialized problems. He thinks that transition is occurring, but they still struggle with some of the distinctive aspects of HPC, especially as it pertains to their cluster computing resources. The mainframes of the past were much easier to deal with compared to a system with thousands of nodes, where the job has to split up into little pieces. Further constraining the use of these systems is the limited pool of talent that can manage those resources.

“I don’t know where that changes though,” says Humphries. “It’s not something that every kid is going to learn in college and it’s not something everybody is going to learn on the job.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The TianHe-2A will use a proprieta Read more…

By John Russell

SC17 Preview: Invited Talk Lineup Includes Gordon Bell, Paul Messina and Many Others

September 25, 2017

With the addition of esteemed supercomputing pioneer Gordon Bell to its invited talk lineup, SC17 now boasts a total of 12 invited talks on its agenda. As SC explains, "Invited Talks are a premier component of the SC Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Fo Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This