HPC in the Land of 24/7

By Michael Feldman

November 23, 2007

More businesses than ever are employing high performance computing capabilities to fulfill their mission-critical needs. While many of these companies aren’t using traditional technical computing, they still require a level of processing power, networking performance or storage scale that necessitates HPC assets. In most cases, the systems are not being used to produce a single answer or model a specific problem, but rather provide a continuous high performance capability for processing real-time transactions. In this type of environment, pure performance is not enough; marrying HPC with mission-critical computing is the real challenge.

Examples of such businesses include Wal-Mart, NASDAQ, and FedEx, three companies that shared their experiences with high performance computing at a Masterworks session at SC07 in Reno last week. The session was organized with the help of the Council on Competitiveness, an NGO that focuses on U.S. economic competitiveness opportunities and challenges.

NASDAQ — Speed, Cost and Reliability are Key

As executive vice president of Operations and Technology and chief information officer of NASDAQ since 2005, Anna Ewing has witnessed a rapid transformation of financial market exchanges. Although the industry is now extremely high-tech, it’s been slow to become globalized in the manner of most other industries. Here in the U.S., and even more so, in other countries, the exchanges have been maintained and protected as near monopolies by their government benefactors. Today though, the globalization of market exchanges is occurring in parallel with the rapid increase in electronic trading volume. In this environment, transaction speed, data throughput and low latency messaging are the technological features that give exchanges their competitive edge.

The most immediate challenge for NASDAQ is to keep up with the message data as electronic exchange traffic continues to skyrocket. Ewing says the exchange use to double its data traffic every year; now it’s every six months. The interconnectedness of the global markets is also stressing the system. Thanks to the near instantaneous transfer of market data, disruptive financial events quickly ripple through the world’s markets. In this volatile environment, predictability becomes a real asset and users gravitate to those exchanges where they know the trades can be executed reliably.

According to Ewing , their target is Four Nines (99.99 percent) reliability and they’ve been tracking to Five Nines (99.999 percent). Immediately after 9/11, the NASDAQ systems remained operational, thanks to a virtualized model and computing resources that were distributed across the country. But a lot of their customers were not nearly so fortunate, either because they relied on New York assets or because the redundant systems they had in place had never been tested, and didn’t perform as expected. Because of this and the general chaos of the financial environment, NASDAQ ended up voluntarily shutting down the exchange after 9/11. The lesson for NASDAQ was to include their customers in their business continuity planning and testing.

Because of the ubiquity of Internet applications and recent changes to the market regulatory framework, the barriers to automated trading have lowered dramatically. Achieving low latency market data messaging has becomes a critical feature for attracting traders. At NASDAQ, they’re constantly looking at ways for improving the messaging infrastructure to shave time off transactions. Ewing says they now can provide less than a 1 ms round-trip per message. In an effort to shave microseconds of latency from trades, some customers are collocating in NASDAQ facilities to get an edge over their competitors coming through the WAN.

“From a technology perspective, speed, reliability and low-cost are the life blood of our market,” says Ewing ” On any given day, we will process over two billion transactions at sub-millisecond speeds, at rates of over 200,000 transactions per second.”

Because of the rapidly increasing volumes of transactions, scaling their computing infrastructure becomes a continuous process, not something to be addressed every three or four years as equipment becomes obsolete. NASDAQ relies almost exclusively on commodity platforms, along with their own customized software. Using this model, over the last several years they’ve been able to reduce their cost base by 70 percent.

“There’s nothing fancy about our platforms,” explains Ewing. “It’s the software and network engineering that we perform that is, quite frankly, our core competence — our secret sauce, if you will.”

Wal-Mart — The Challenge of the 410 Billion Row Table

Nancy Stewart, senior vice president and chief technology officer of Wal-Mart Stores Inc., is in charge of the company’s infrastructure, operations and technology roadmap. That turns out to be quite a responsibility. Wal-Mart is the largest retailer in the world, a $370 billion company, whose revenue is larger than IBM, Intel, Microsoft, HP and Dell combined. The company is on track to become the first $1 trillion dollar company within the next few years.

Although Wal-Mart does not talk specifics about the scope of the computing and storage infrastructure it administers, in order to manage their inventory and supply chain, the company must process a 410 billion row table to figure out what is going to end up on its world-wide store shelves on any given day. The data has to be massaged very quickly, so that inventory control can react to real time events, like disasters, man-made supply disruptions or seasonal demand spikes. While the stores themselves may close, the company’s IT infrastructure is up 24/7.

“The value for us in using high performance computing is related to the fact that we have one of the largest data stores in the world,” says Stewart. “In terms of using that data store, in any given two hour period we have to process over two petabytes of data.”

Wal-Mart develops about 80 percent of their software in-house to maintain the level of reliability and availability that they require. When your company is netting $2 billion per hour on the day after Thanksgiving, downtime is not really an option. To work with Wal-Mart, suppliers and other partners have to match the retailer’s devotion to continuous availability. Because of the magnitude of transactions and the cash flow, Wal-Mart doesn’t maintain service level agreements (SLAs) with their computing partners. According to Stewart, none of them could afford the penalties involved with any downtime.

The ongoing problem for Wal-Mart is that their inventory management database has become so large that they’ve maxed out on their ability to handle it. The company’s application represents the “Grand Challenge” of real-time transaction processing. A trillion-row table, which they foresee in the next few years, is going to be difficult to process in real time. What they’re really looking for are predictable tools that can scale to their future needs. In truth, Stewart would prefer even faster turnaround on the inventory they currently manage.

“I really need to be able to mine the data much more quickly than I am now” admits Stewart…. “I’m not getting that today.”

FedEx — Logistics Planning on a Grand Scale

Kevin Humphries is the senior vice president of Technology Systems for FedEx Corporate Services and is responsible for setting technology direction as well as providing data center, network and field infrastructure support. The company’s computing technology orchestrates the delivery of millions of items each day around the world, using a fleet of over 600 aircraft and 75,000 motorized vehicles.

According to Humphries, the only way they’re able pull off this global logistics puzzle is to employ HPC simulation and modeling to help plan the FedEx routes. Trucks and planes have to be continually shuffled from place to place in the most efficient manner possible to make timely deliveries and to optimize resources. It’s not just a mega-version of the traveling salesman problem. In addition to the complex routing, the company has to deal with unforeseen events like weather and equipment breakdowns. On top of that, FedEx has essentially no control over shipping demand at any given time. But it’s the scope of the problem that precipitates the need for HPC.

“We have to take everything that comes our way,” says Humphries. “That creates about 30 million origin-destination pairs that have to be planned 24/7 every hour of the day, over all the assets that we own.”

The initial logistics plan for using the assets is performed with traditional HPC cluster tools well in advance of the actual shipments. As the time winds down to the day of execution, the model is continuously refined (some on grid platforms) to support a real time response. The refined model has to react to environmental conditions, like weather, mechanical breakdowns and infrastructure problems. An extremely high capacity computing environment is used to coalesce all the information in real time.

Humphries main frustration with high performance computing technology is its uniqueness. Businesses like FedEx would like to see their HPC assets seamlessly embedded into their overall enterprise infrastructure rather than have to be treated as an island of resources devoted to solving specialized problems. He thinks that transition is occurring, but they still struggle with some of the distinctive aspects of HPC, especially as it pertains to their cluster computing resources. The mainframes of the past were much easier to deal with compared to a system with thousands of nodes, where the job has to split up into little pieces. Further constraining the use of these systems is the limited pool of talent that can manage those resources.

“I don’t know where that changes though,” says Humphries. “It’s not something that every kid is going to learn in college and it’s not something everybody is going to learn on the job.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This