HPC in the Land of 24/7

By Michael Feldman

November 23, 2007

More businesses than ever are employing high performance computing capabilities to fulfill their mission-critical needs. While many of these companies aren’t using traditional technical computing, they still require a level of processing power, networking performance or storage scale that necessitates HPC assets. In most cases, the systems are not being used to produce a single answer or model a specific problem, but rather provide a continuous high performance capability for processing real-time transactions. In this type of environment, pure performance is not enough; marrying HPC with mission-critical computing is the real challenge.

Examples of such businesses include Wal-Mart, NASDAQ, and FedEx, three companies that shared their experiences with high performance computing at a Masterworks session at SC07 in Reno last week. The session was organized with the help of the Council on Competitiveness, an NGO that focuses on U.S. economic competitiveness opportunities and challenges.

NASDAQ — Speed, Cost and Reliability are Key

As executive vice president of Operations and Technology and chief information officer of NASDAQ since 2005, Anna Ewing has witnessed a rapid transformation of financial market exchanges. Although the industry is now extremely high-tech, it’s been slow to become globalized in the manner of most other industries. Here in the U.S., and even more so, in other countries, the exchanges have been maintained and protected as near monopolies by their government benefactors. Today though, the globalization of market exchanges is occurring in parallel with the rapid increase in electronic trading volume. In this environment, transaction speed, data throughput and low latency messaging are the technological features that give exchanges their competitive edge.

The most immediate challenge for NASDAQ is to keep up with the message data as electronic exchange traffic continues to skyrocket. Ewing says the exchange use to double its data traffic every year; now it’s every six months. The interconnectedness of the global markets is also stressing the system. Thanks to the near instantaneous transfer of market data, disruptive financial events quickly ripple through the world’s markets. In this volatile environment, predictability becomes a real asset and users gravitate to those exchanges where they know the trades can be executed reliably.

According to Ewing , their target is Four Nines (99.99 percent) reliability and they’ve been tracking to Five Nines (99.999 percent). Immediately after 9/11, the NASDAQ systems remained operational, thanks to a virtualized model and computing resources that were distributed across the country. But a lot of their customers were not nearly so fortunate, either because they relied on New York assets or because the redundant systems they had in place had never been tested, and didn’t perform as expected. Because of this and the general chaos of the financial environment, NASDAQ ended up voluntarily shutting down the exchange after 9/11. The lesson for NASDAQ was to include their customers in their business continuity planning and testing.

Because of the ubiquity of Internet applications and recent changes to the market regulatory framework, the barriers to automated trading have lowered dramatically. Achieving low latency market data messaging has becomes a critical feature for attracting traders. At NASDAQ, they’re constantly looking at ways for improving the messaging infrastructure to shave time off transactions. Ewing says they now can provide less than a 1 ms round-trip per message. In an effort to shave microseconds of latency from trades, some customers are collocating in NASDAQ facilities to get an edge over their competitors coming through the WAN.

“From a technology perspective, speed, reliability and low-cost are the life blood of our market,” says Ewing ” On any given day, we will process over two billion transactions at sub-millisecond speeds, at rates of over 200,000 transactions per second.”

Because of the rapidly increasing volumes of transactions, scaling their computing infrastructure becomes a continuous process, not something to be addressed every three or four years as equipment becomes obsolete. NASDAQ relies almost exclusively on commodity platforms, along with their own customized software. Using this model, over the last several years they’ve been able to reduce their cost base by 70 percent.

“There’s nothing fancy about our platforms,” explains Ewing. “It’s the software and network engineering that we perform that is, quite frankly, our core competence — our secret sauce, if you will.”

Wal-Mart — The Challenge of the 410 Billion Row Table

Nancy Stewart, senior vice president and chief technology officer of Wal-Mart Stores Inc., is in charge of the company’s infrastructure, operations and technology roadmap. That turns out to be quite a responsibility. Wal-Mart is the largest retailer in the world, a $370 billion company, whose revenue is larger than IBM, Intel, Microsoft, HP and Dell combined. The company is on track to become the first $1 trillion dollar company within the next few years.

Although Wal-Mart does not talk specifics about the scope of the computing and storage infrastructure it administers, in order to manage their inventory and supply chain, the company must process a 410 billion row table to figure out what is going to end up on its world-wide store shelves on any given day. The data has to be massaged very quickly, so that inventory control can react to real time events, like disasters, man-made supply disruptions or seasonal demand spikes. While the stores themselves may close, the company’s IT infrastructure is up 24/7.

“The value for us in using high performance computing is related to the fact that we have one of the largest data stores in the world,” says Stewart. “In terms of using that data store, in any given two hour period we have to process over two petabytes of data.”

Wal-Mart develops about 80 percent of their software in-house to maintain the level of reliability and availability that they require. When your company is netting $2 billion per hour on the day after Thanksgiving, downtime is not really an option. To work with Wal-Mart, suppliers and other partners have to match the retailer’s devotion to continuous availability. Because of the magnitude of transactions and the cash flow, Wal-Mart doesn’t maintain service level agreements (SLAs) with their computing partners. According to Stewart, none of them could afford the penalties involved with any downtime.

The ongoing problem for Wal-Mart is that their inventory management database has become so large that they’ve maxed out on their ability to handle it. The company’s application represents the “Grand Challenge” of real-time transaction processing. A trillion-row table, which they foresee in the next few years, is going to be difficult to process in real time. What they’re really looking for are predictable tools that can scale to their future needs. In truth, Stewart would prefer even faster turnaround on the inventory they currently manage.

“I really need to be able to mine the data much more quickly than I am now” admits Stewart…. “I’m not getting that today.”

FedEx — Logistics Planning on a Grand Scale

Kevin Humphries is the senior vice president of Technology Systems for FedEx Corporate Services and is responsible for setting technology direction as well as providing data center, network and field infrastructure support. The company’s computing technology orchestrates the delivery of millions of items each day around the world, using a fleet of over 600 aircraft and 75,000 motorized vehicles.

According to Humphries, the only way they’re able pull off this global logistics puzzle is to employ HPC simulation and modeling to help plan the FedEx routes. Trucks and planes have to be continually shuffled from place to place in the most efficient manner possible to make timely deliveries and to optimize resources. It’s not just a mega-version of the traveling salesman problem. In addition to the complex routing, the company has to deal with unforeseen events like weather and equipment breakdowns. On top of that, FedEx has essentially no control over shipping demand at any given time. But it’s the scope of the problem that precipitates the need for HPC.

“We have to take everything that comes our way,” says Humphries. “That creates about 30 million origin-destination pairs that have to be planned 24/7 every hour of the day, over all the assets that we own.”

The initial logistics plan for using the assets is performed with traditional HPC cluster tools well in advance of the actual shipments. As the time winds down to the day of execution, the model is continuously refined (some on grid platforms) to support a real time response. The refined model has to react to environmental conditions, like weather, mechanical breakdowns and infrastructure problems. An extremely high capacity computing environment is used to coalesce all the information in real time.

Humphries main frustration with high performance computing technology is its uniqueness. Businesses like FedEx would like to see their HPC assets seamlessly embedded into their overall enterprise infrastructure rather than have to be treated as an island of resources devoted to solving specialized problems. He thinks that transition is occurring, but they still struggle with some of the distinctive aspects of HPC, especially as it pertains to their cluster computing resources. The mainframes of the past were much easier to deal with compared to a system with thousands of nodes, where the job has to split up into little pieces. Further constraining the use of these systems is the limited pool of talent that can manage those resources.

“I don’t know where that changes though,” says Humphries. “It’s not something that every kid is going to learn in college and it’s not something everybody is going to learn on the job.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This