HPC in the Land of 24/7

By Michael Feldman

November 23, 2007

More businesses than ever are employing high performance computing capabilities to fulfill their mission-critical needs. While many of these companies aren’t using traditional technical computing, they still require a level of processing power, networking performance or storage scale that necessitates HPC assets. In most cases, the systems are not being used to produce a single answer or model a specific problem, but rather provide a continuous high performance capability for processing real-time transactions. In this type of environment, pure performance is not enough; marrying HPC with mission-critical computing is the real challenge.

Examples of such businesses include Wal-Mart, NASDAQ, and FedEx, three companies that shared their experiences with high performance computing at a Masterworks session at SC07 in Reno last week. The session was organized with the help of the Council on Competitiveness, an NGO that focuses on U.S. economic competitiveness opportunities and challenges.

NASDAQ — Speed, Cost and Reliability are Key

As executive vice president of Operations and Technology and chief information officer of NASDAQ since 2005, Anna Ewing has witnessed a rapid transformation of financial market exchanges. Although the industry is now extremely high-tech, it’s been slow to become globalized in the manner of most other industries. Here in the U.S., and even more so, in other countries, the exchanges have been maintained and protected as near monopolies by their government benefactors. Today though, the globalization of market exchanges is occurring in parallel with the rapid increase in electronic trading volume. In this environment, transaction speed, data throughput and low latency messaging are the technological features that give exchanges their competitive edge.

The most immediate challenge for NASDAQ is to keep up with the message data as electronic exchange traffic continues to skyrocket. Ewing says the exchange use to double its data traffic every year; now it’s every six months. The interconnectedness of the global markets is also stressing the system. Thanks to the near instantaneous transfer of market data, disruptive financial events quickly ripple through the world’s markets. In this volatile environment, predictability becomes a real asset and users gravitate to those exchanges where they know the trades can be executed reliably.

According to Ewing , their target is Four Nines (99.99 percent) reliability and they’ve been tracking to Five Nines (99.999 percent). Immediately after 9/11, the NASDAQ systems remained operational, thanks to a virtualized model and computing resources that were distributed across the country. But a lot of their customers were not nearly so fortunate, either because they relied on New York assets or because the redundant systems they had in place had never been tested, and didn’t perform as expected. Because of this and the general chaos of the financial environment, NASDAQ ended up voluntarily shutting down the exchange after 9/11. The lesson for NASDAQ was to include their customers in their business continuity planning and testing.

Because of the ubiquity of Internet applications and recent changes to the market regulatory framework, the barriers to automated trading have lowered dramatically. Achieving low latency market data messaging has becomes a critical feature for attracting traders. At NASDAQ, they’re constantly looking at ways for improving the messaging infrastructure to shave time off transactions. Ewing says they now can provide less than a 1 ms round-trip per message. In an effort to shave microseconds of latency from trades, some customers are collocating in NASDAQ facilities to get an edge over their competitors coming through the WAN.

“From a technology perspective, speed, reliability and low-cost are the life blood of our market,” says Ewing ” On any given day, we will process over two billion transactions at sub-millisecond speeds, at rates of over 200,000 transactions per second.”

Because of the rapidly increasing volumes of transactions, scaling their computing infrastructure becomes a continuous process, not something to be addressed every three or four years as equipment becomes obsolete. NASDAQ relies almost exclusively on commodity platforms, along with their own customized software. Using this model, over the last several years they’ve been able to reduce their cost base by 70 percent.

“There’s nothing fancy about our platforms,” explains Ewing. “It’s the software and network engineering that we perform that is, quite frankly, our core competence — our secret sauce, if you will.”

Wal-Mart — The Challenge of the 410 Billion Row Table

Nancy Stewart, senior vice president and chief technology officer of Wal-Mart Stores Inc., is in charge of the company’s infrastructure, operations and technology roadmap. That turns out to be quite a responsibility. Wal-Mart is the largest retailer in the world, a $370 billion company, whose revenue is larger than IBM, Intel, Microsoft, HP and Dell combined. The company is on track to become the first $1 trillion dollar company within the next few years.

Although Wal-Mart does not talk specifics about the scope of the computing and storage infrastructure it administers, in order to manage their inventory and supply chain, the company must process a 410 billion row table to figure out what is going to end up on its world-wide store shelves on any given day. The data has to be massaged very quickly, so that inventory control can react to real time events, like disasters, man-made supply disruptions or seasonal demand spikes. While the stores themselves may close, the company’s IT infrastructure is up 24/7.

“The value for us in using high performance computing is related to the fact that we have one of the largest data stores in the world,” says Stewart. “In terms of using that data store, in any given two hour period we have to process over two petabytes of data.”

Wal-Mart develops about 80 percent of their software in-house to maintain the level of reliability and availability that they require. When your company is netting $2 billion per hour on the day after Thanksgiving, downtime is not really an option. To work with Wal-Mart, suppliers and other partners have to match the retailer’s devotion to continuous availability. Because of the magnitude of transactions and the cash flow, Wal-Mart doesn’t maintain service level agreements (SLAs) with their computing partners. According to Stewart, none of them could afford the penalties involved with any downtime.

The ongoing problem for Wal-Mart is that their inventory management database has become so large that they’ve maxed out on their ability to handle it. The company’s application represents the “Grand Challenge” of real-time transaction processing. A trillion-row table, which they foresee in the next few years, is going to be difficult to process in real time. What they’re really looking for are predictable tools that can scale to their future needs. In truth, Stewart would prefer even faster turnaround on the inventory they currently manage.

“I really need to be able to mine the data much more quickly than I am now” admits Stewart…. “I’m not getting that today.”

FedEx — Logistics Planning on a Grand Scale

Kevin Humphries is the senior vice president of Technology Systems for FedEx Corporate Services and is responsible for setting technology direction as well as providing data center, network and field infrastructure support. The company’s computing technology orchestrates the delivery of millions of items each day around the world, using a fleet of over 600 aircraft and 75,000 motorized vehicles.

According to Humphries, the only way they’re able pull off this global logistics puzzle is to employ HPC simulation and modeling to help plan the FedEx routes. Trucks and planes have to be continually shuffled from place to place in the most efficient manner possible to make timely deliveries and to optimize resources. It’s not just a mega-version of the traveling salesman problem. In addition to the complex routing, the company has to deal with unforeseen events like weather and equipment breakdowns. On top of that, FedEx has essentially no control over shipping demand at any given time. But it’s the scope of the problem that precipitates the need for HPC.

“We have to take everything that comes our way,” says Humphries. “That creates about 30 million origin-destination pairs that have to be planned 24/7 every hour of the day, over all the assets that we own.”

The initial logistics plan for using the assets is performed with traditional HPC cluster tools well in advance of the actual shipments. As the time winds down to the day of execution, the model is continuously refined (some on grid platforms) to support a real time response. The refined model has to react to environmental conditions, like weather, mechanical breakdowns and infrastructure problems. An extremely high capacity computing environment is used to coalesce all the information in real time.

Humphries main frustration with high performance computing technology is its uniqueness. Businesses like FedEx would like to see their HPC assets seamlessly embedded into their overall enterprise infrastructure rather than have to be treated as an island of resources devoted to solving specialized problems. He thinks that transition is occurring, but they still struggle with some of the distinctive aspects of HPC, especially as it pertains to their cluster computing resources. The mainframes of the past were much easier to deal with compared to a system with thousands of nodes, where the job has to split up into little pieces. Further constraining the use of these systems is the limited pool of talent that can manage those resources.

“I don’t know where that changes though,” says Humphries. “It’s not something that every kid is going to learn in college and it’s not something everybody is going to learn on the job.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This