InfiniBand and 10GbE Head for Showdown

By Michael Feldman

December 21, 2007

Will 10 Gigabit Ethernet (10GbE) reach critical mass in the datacenter next year? The beginnings of a viable 10GbE ecosystem are now emerging and a number of analysts think 2008 may be a watershed year for this technology. Dell’Oro Group reports nearly a million 10GbE switch ports were shipped in 2007 and predicts 100 percent growth over the next two years. The Linley Group estimated 50 thousand 10GbE NICs were shipped in 2007 (twice as many as the previous year); however, 99 percent went into midrange Unix servers rather than x86-based systems. Although some formidable challenges remain, the industry may finally be ready to make the shift from Gigabit Ethernet (GigE) to 10GbE.

The key battleground for interconnect dominance will take place where high performance connectivity is in most demand: high end technical computing (science research, oil & gas, financial services, life sciences, digital animation, etc.) and high performance enterprise computing (Web 2.0, video editing & production, IPTV, real-time database applications, etc.). These types of applications have a critical need for more bandwidth and/or lower latency. With computing power being concentrated by multicore processors, blade servers and virtualization, server-to-server and server-to-storage communication has become a critical bottleneck.

While Fibre Channel is confined to storage networks, both InfiniBand and Ethernet have the ability to connect both storage and compute servers. Although InfiniBand is well established at the high end of HPC, the vast mid-market is still up for grabs, and will quickly respond to the best price/performance solution. The 10GbE switch and NIC vendors are counting on the ubiquity of Ethernet to make it a no-brainer as a unified server and storage fabric for the datacenter.

Analysts like Linley Group’s Bob Wheeler would support that contention. In a report about the benefits and challenges of 10GbE, Wheeler writes: “[T]the adoption of 10GbE is a certainty. The only questions are how quickly 10GbE will be adopted and to what extent it will displace alternative technologies such as Fibre Channel and InfiniBand.” In truth, adoption is long overdue; the aforementioned Linley report was written in January 2005.

InfiniBand vendors believe that the technical superiority and attractive price/performance of their technology have paved the way to the HPC mid-market as well as to the broader enterprise computing market, where highly dense and highly utilized hardware is creating the same demands on the interconnect as it has in traditional HPC. Over the past couple of years, InfiniBand has established itself as the de facto standard for high performance interconnects. More than half (58 percent) of the 100 fastest supercomputers now use InfiniBand, according the latest TOP500 list. Although the list is still dominated by Gigabit Ethernet overall, InfiniBand penetration has been doubling every year since 2005. (For one man’s view of the significance of InfiniBand’s rise in the TOP500, read Gilad Shainer’s article in this issue.)

By moving from Single Data Rate (10 Gbps) to Double Data Rate (20 Gbps) in 2007, InfiniBand has opened up a performance gap that 10GbE will be hard-pressed to fill. With Quad Data Rate InfiniBand (40 Gbps) products on the horizon, 10GbE will have to compete on something other than raw performance.

The big selling points for 10GbE are its position as the heir apparent of GigE and its ability to act as a unifying fabric for NAS, SANs, LANs, and cluster computing systems in the datacenter. NIC vendors like NetEffect, NetXen, and Chelsio Communications are offering 10GbE adapters with built-in support for RDMA (iWARP) to lighten the load on the CPU and achieve InfiniBand-like latency. Chelsio has been pushing its “unified wire” strategy based on its new 10GbE Terminator 3 ASIC. The chip has the ability to handle NIC, TOE, iSCSI and RDMA applications concurrently.

Up until this point, the 10GbE NICs and switches have been too expensive to be widely deployed in clustered systems. But with sub-$1000, RDMA-capable NICs starting to appear from vendors like Chelsio and $400-per-port switches from Arastra, that equation is changing. Arastra is using Fulcrum’s latest 10GbE switch silicon, which was designed to enable compute and storage clustering via Ethernet connectivity.

According to Chelsio CEO and President Kianoosh Naghshineh, once 10GbE NICs that support storage and server connectivity become standard on server motherboards, users will be faced with the decision to purchase additional InfiniBand and Fibre Channel HBA/HCAs, switches and gateways for clustering applications or to just use the omnipresence Ethernet NIC. He predicts 10GbE will have “an identical or better cost structure with InfiniBand by the end of next year [2008].”

This year, Woven Systems, a startup switch vendor, set the stage for datacenter Ethernet when it released the EFX 1000, a 10GbE switch that performs active congestion management for lossless Ethernet. In tests at Sandia National Laboratories, researchers determined that the Woven switch actually outperformed an SDR InfiniBand setup when running a CBench performance test. The lab recently deployed the Woven switch for its 128-node “Talon” cluster.

“Ten gig is really ready for prime time in high performance computing and compute cluster interconnects,” said Derek Granath, Woven’s VP of marketing. “The ecosystem is mature.”

Finisar Corporation, an optical communications vendor, sees a big opportunity in fiber optical cables for Ethernet. The company recently announced its “Laserwire” optical cable assembly aimed at 10GbE connectivity. Unlike some of the other optical cable vendors, like Intel and Luxtera, which are more focused on InfiniBand connectivity, the Finisar assembly is implemented as a single 10 Gbps serial link optimized for 10GbE. It requires just 0.5 watts per optoelectrical transceiver at each end of the cable. The company is betting that the move to 10GbE in both HPC and the larger enterprise market is imminent and they want to be there to catch the wave.

To some extent, the OpenFabrics Enterprise Distribution (OFED) software stack is leveling the interconnect playing field by creating a unified platform for RDMA over Ethernet and InfiniBand. By making the software interoperable, users are free to take advantage of either technology without having to modify their code. The wild card here is Intel’s 10GbE approach, which rejects the RDMA/TOE model in favor of an I/O acceleration system that distributes network processing over the entire platform (the processor, chipset, network controller and software). Sun Microsystems announced its own 10GbE networking technology that offers a similar approach. At this point, the industry has not decided which approach to favor.

None of the 10GbE vendors think Ethernet is ready to replace InfiniBand at the high end of HPC. For those applications, InfiniBand’s bandwidth and latency cannot be matched by the current 10GbE solutions. In certain cases, application performance may be better with Ethernet solutions, based on more mature IP software stacks or the use of traffic routing in some of the newer switches. But for the most part, InfiniBand is about two years ahead of Ethernet in raw performance. InfiniBand switches and adapters that support QDR (40 Gbps) will begin to appear next year, while 40GbE is not expected to be ratified as a standard until 2010 (with volume product shipments years after that).

Rather than taking advantage of a deeply entrenched base, InfiniBand vendors are looking to work their way down from the TOP500 list into the volume market. Buoyed by a May 2007 InfiniBand study from IDC that projected a 40 percent compound annual growth rate in total factory revenue (InfiniBand switches and adapters) from 2006 to 2011, vendors are eyeing the broader enterprise market and moving to the next technology level.

Mellanox, the sole InfiniBand switch silicon vendor, recently announced its next generation InfiniScale IV chip, which supports QDR InfiniBand. The chip offers server-to-server and server-to-storage connections of 40 Gbps. (Because of inefficiencies and overhead in PCI Express 2.0, applications will realize only about 25 Gbps.) Latencies across a single switch chip are 60ns — less than a third of the latency of the top-of-the-line 10GbE switch silicon. The InfiniScale IV silicon supports 36 ports per switch, compared to the 24 ports supported by InfiniScale III technology and current 10GbE switch silicon. This works to reduce application-level latency for scaled-out clusters due to fewer switch hops. The latest chip also supports adaptive routing for those cases where static routing is not optimal, and congestion management to prevent the whole fabric from being overwhelmed with unusually heavy traffic. The new Mellanox switch chip is scheduled to be available in Q1 2008, and both QDR switches and adapters are expected to show up later in the year. QDR InfiniBand is likely to make its debut on the TOP500 list, perhaps by November 2008.

While the 10GbE proponents would love to get a system on the TOP500 list, the real battle is more likely to take place in the trenches of the datacenter, where sub-teraflop cluster systems are being sold in volume and are often connected in more loosely-coupled grids. Here 10GbE solutions may have an edge over InfiniBand since this type of installation is more likely to end up in an Ethernet-only facility. Also systems such as these often don’t need the maximum levels of connectivity performance offered by InfiniBand.

For their part, InfiniBand suppliers are hoping that increases in virtualization and compute and storage density continue to the point where connectivity demands outrun what 10GbE solutions can reasonably provide. In that scenario, InfiniBand is likely to become a much more mainstream solution. The next 12 months may provide some answers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This