The New Face of the TOP500

By Gilad Shainer, MSc

December 21, 2007

In the recent lists, the TOP500 coverage has shifted from pure high-performance computing (HPC) to include more enterprise-based solutions. In the latest TOP500 release, the 30th list, published in November 2007, the majority of the systems were enterprise datacenter (EDC)-based, mainly interconnected rack-mounted systems, while the minority of the systems were the traditional high-performance computers, mainly cluster-based solutions. In this article we will analyze the historical and current technological trends in high-performance computing and provide an updated analysis model for the TOP500 project.

“The only constant is change,” said Heraclitus, an ancient Greek philosopher. This is certainly true when describing the market of high-performance computing. The HPC market is characterized by a rapid change of architectures, technologies and usage. The only continuous, steady characteristic of HPC is the ever-growing demand for performance, showing an increase of 100X every ten years based on the TOP500 list.

The enterprise datacenter market is less tolerant to rapid changes, and typically changes are much more moderate. While the HPC market drives the technology further and evaluates many leading-edge architectures, only the proven solutions that have been widely adopted by HPC, and in particular by the commercial HPC markets, are accepted and spread into the EDC market.

The Era of Clustered Commodity Servers

Clustered commodity servers have become the dominant solution both for HPC and EDC, as they offer tremendous price/performance benefits, unparalleled flexibility in deployment, and reduced long-term maintenance. According to the latest TOP500 list, more than 80 percent of the listed systems are clusters. With the fast adoption of the cluster architecture, the importance of interconnect solutions has risen as well.

The use of off-the-shelf commodity and standard components has made its mark on the interconnect solutions, making Gigabit Ethernet and InfiniBand the dominant solutions. In the early days, when single-core CPUs were the common solution, Gigabit Ethernet was used mainly for the cases where there was no need for intensive I/O, and InfiniBand for high-performance computing or I/O intensive enterprise applications. Since the mid 2000s, multi-core processors have taken over the single-core CPUs due to the ever-increasing need for performance and increasing demand for low power solutions. This new trend pushed the need for fatter standard interconnects that can handle the increasing I/O demands, as more CPUs share the same connection.

Figure 1

Maximizing productivity and reducing power consumption have become the key issues in today’s compute solution. In the HPC segment, most applications utilize the entire compute resource, and therefore require high throughput and low-latency connectivity between the cluster server nodes. In the EDC segment, many applications are not compute intensive, and therefore virtualization becomes essential for increasing system productivity. Virtualization enables running multiple environments or multiple applications on the same compute system in order to maximize the CPU utilization. This solution creates the same load on the interconnect, as more throughput is required between servers and between servers and storage. While HPC and virtualized EDC environments are different from the application perspective, they require the same characteristics from the cluster interconnect.

The TOP500 List

The TOP500 project provides a list of sites operating the 500 most powerful computer systems. It does not mean that those systems are being used daily as a single supercomputer, and in some cases the daily usage is rather from a single server or a small group of servers. In those cases, the sites or the systems manufacturers gather together the site’s compute resources to form a single supercomputer to execute the LINPACK benchmark and submit the results to the TOP500 project. This action is sometimes done during installations of new systems. Since the compute resources in most cases are already connected together, the task of measuring them as a whole is an easy one.

The TOP500 list is considered an HPC-related list, and many analyze the list statistics for understanding market and technology trends. When the system architecture converged for HPC and EDC, the TOP500 list shifted away from providing statistics solely for the HPC market. In particular, this is the case with the latest lists, where clusters have become the dominant solution across the different markets. Clustering enables single servers to scale up and form a supercomputer, even if it is just for one day.

Moreover, clustering and the use of off-the-shelf components brings the power of supercomputing to the HPC masses, and to many other markets. The recent TOP500 lists (in particular the latest one — the 30th) shifted from representing only the HPC market to representing the entire cluster market, or in general, interconnected servers. In order to provide better and accurate analysis of the TOP500 list, one needs to break the list into two separate lists — the upper part, the top 100 systems, which continue to truly represent the HPC market, and the lower part, which represents the cluster market — both HPC and EDC.

TOP100: High Performance Computing

The pure HPC portion of today’s TOP500 list is the TOP100. This part is ruled by the supercomputers that actually serve as supercomputers. The TOP100 systems can be divided into two main categories: clusters with 51 percent of the entries (up from the 41 percent on the November 2005 list) and MPPs with 47 percent (down from 55 percent on the November 2005 list). As observed in the recent lists, clusters continue to show a strong growth and have become the preferred solutions for HPC systems.

Figure 2

The types of interconnects used in recent years clearly indicate the domination of standard interconnects over propriety solutions, which is consistent with the vast adoptions of standard and off-the-shelf components. InfiniBand has become the natural choice for HPC and in particular for clusters, connecting more than 58 percent of the TOP100 clusters. The number of InfiniBand connected clusters has shown a positive growth in every TOP100 list since its first appearance on the TOP500 list. This trend is anticipated to continue throughout the following years, especially with the increasing number of CPU cores per server node platform, which requires the highest bandwidth and lowest latency.

The use of proprietary interconnect solutions for clusters has been reduced from 70 percent in November 2005 to less than 20 percent in November 2007, indicating the market preference for standard components (which nowadays also provide superior performance and price/performance). The use of InfiniBand is not solely for clusters, since many MPP-based systems use InfiniBand interconnects as well. Another interesting point is the non-existence of 10GigE-based solutions. The main reasons for that is the superior performance and the advanced HPC-related features of InfiniBand over 10GigE, such as congestion control, adaptive routing and extremely low CPU overhead.

TOP101-500: General Purpose Clusters

While the TOP100 is divided between clusters and MPPs, the 400 systems that make up the lower segment of the TOP500 list (the systems ranked 101-400) are mostly clusters. Of these, 355 systems, almost 90 percent, are labeled clusters, while only 44 systems are marked as MPPs.

Figure 3

The lower segment of the TOP500 has become the cluster’s segment, and represents the general cluster market, both HPC and EDC. For HPC, this segment represents the lower end of the HPC systems, as the higher end is being represented in the TOP100. Many of the systems are not being used for single applications and some of them are “supercomputers for a day,” when the Linpack benchmark is run. The demand for standard components exists throughout the TOP500 list, and in the lower segment, InfiniBand and GigE connect almost 90 percent of the systems (347 systems out of 400) and 95 percent of these systems are marked as clusters (336 out of 355). The domination of clusters and standard interconnects will continue to exist in the future years, as this architecture provides great flexibility of scaling, from single nodes to large systems, and has superior price/performance over other architectures.

In order to understand the mixture of HPC and EDC systems in the cluster segment, one needs to analyze the application usage as reported on the TOP500 list. Since in several cases the applications are not known, and in other cases they are not clearly described, a conservative approach is preferred. All educational, research and classified applications should be marked as HPC, even though in some cases those systems are EDC type. Out of the cluster segment, 40 percent of the systems can be marked as HPC, meaning being used for HPC types of applications, while 60 percent of the systems can be marked as EDC.

The HPC part of the cluster segment is divided almost evenly between InfiniBand and GigE (45 percent and 55 percent). InfiniBand shows a steady growth in the HPC part, and is being driven by other technology trends as well – multi-core CPUs and fabric consolidation.

For the systems marked as EDC in the clusters segment, GigE connectivity is used in 85 percent of them and InfiniBand in 15 percent of the systems. Many of the EDC systems are supercomputers-for-a-day, and the rest of the time are being used as separate workstations, and therefore do not require high-speed connectivity. The average efficiency (how much of the theoretical available compute power can practically be utilized) of the GigE-based EDC systems is in the range of 50 percent versus 70 percent for the InfiniBand-based systems as reported on the TOP500 list.

This is yet another indicator that these systems are being used as small clusters or individual workstations. Low efficiency is translated into a vast waste of compute power and expensive maintenance (low price/performance and power/performance figures) and cannot be tolerated in supercomputers. Moreover, the EDC segment is traditionally known as a slow technology adopter, and therefore slower penetration of InfiniBand compared to the HPC segment is understandable.

Out of the InfiniBand-based solutions, 70 percent can be labeled as HPC and 30 percent as EDC, while out of the GigE-based solutions the case is opposite – 30 percent can be marked as HPC and 70 percent as EDC. While HPC and EDC share several key technology trends such as clusters and multi-core CPUs, some technology trends are applicable to only one of the markets. This is the case with virtualization. Virtualization aims to improve system utilization by enabling multiple applications to run in parallel on the same physical system.

Most of the HPC applications already fully utilize the system’s compute resources and therefore there is no need for virtualization. In EDC, the case is different and virtualization has become a key technology trend. By increasing system utilization through virtualization, the system I/O demands increase as well, to match the demands seen in the HPC environments. This leads to the increasing use of interconnects that can provide high bandwidth, instead of multiple GigE and Fibre-channel I/O ports (I/O unification). Therefore, one would expect to see increased use of InfiniBand for EDC systems in future TOP500 lists.

As in the TOP100, there is no 10GigE-based solution in the cluster segment, and the reasons are the same. 10GigE falls behind InfiniBand and GigE on the price/performance criteria, and with the adoption of virtualization, 10GigE will not provide the needed throughput and will fall behind InfiniBand. InfiniBand 40Gb/s has already been demonstrated, and with the InfiniBand technology being adopted in the EDC market, InfiniBand will become key for both clustering and virtualized environments. As power becomes an important factor in system design, power/performance becomes a key metric along with price/performance, and the ability to provide high throughput with low power will drive InfiniBand adoption as well.

Summary

The TOP500 list aims to rank the 500 highest performing supercomputers in the world, but as we enter a consolidation period, the list shifts from focusing only on HPC systems to representing systems used for other purposes as well, specifically EDC. Clusters derived from standard components have become commonly used for all types and classes of systems – from large-scale ten thousand server node systems, to small-scale systems with tens of servers, to single workstations. The small-scale systems and the single workstations or servers can be connected together to form a supercomputer-for-a-day, and be listed on the prestigious TOP500 list, and this has driven many OEM vendors to submit non-high-performance computing systems to the TOP500 list.

In order to analyze the vital information in the recent TOP500 list to better understand the technology and market trends, the list should to be divided into HPC-centric (TOP100) and general cluster (TOP101-500) categories. The former shows the trends in the HPC market and the latter in the general clustering markets, both HPC and EDC.

While the usage model of HPC and EDC systems and applications is different, most of the technology trends are identical. The need for complex simulations and research in the HPC segment and virtualization in the EDC market, together with the domination of multi-core CPUs and the need for faster storage, mandates the use of a high throughput and low latency I/O solution. InfiniBand is the only industry-standard interconnect that provides the required bandwidth, latency, power and utilization characteristics. InfiniBand has become the interconnect of choice for high-performance applications and has started to penetrate into the enterprise datacenter as well. With its superior price/performance and power/performance, InfiniBand is expected to continue those trends in the foreseeable future.

—–

The author would like to thank Bill Lee and Sujal Das from Mellanox Technologies for their contributions during reviews of this article.

Gilad Shainer ([email protected]) is a senior technical marketing manager at Mellanox Technologies (www.mellanox.com) focusing on high performance computing, high speed interconnects and performance characterization. He joined Mellanox Technologies in 2001 to develop Mellanox’s InfiniHost PCI-X Host Channel Adapter (HCA) device and later led the development of Mellanox’s InfiniHost III Ex PCI Express HCA device. Gilad Shainer holds MSc degree (2001, Cum Laude) and a BSc degree (1998, Cum Laude) in Electrical Engineering from the Technion Institute of Technology in Israel.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This