Core Economics

By Michael Feldman

January 11, 2008

With all major chipmakers committed to the multicore path, it seems only a matter of time before manycore (processors with greater than 8 cores) becomes the standard architecture across all computing sectors. The 128-core NVIDIA GPUs, the Cisco’s 188-core Metro network processor, and the 64-core Tilera TILE64 processor are three early examples of this trend. The 80-core prototype demonstrated by Intel is an indication that even the most mainstream segments of the computer industry are looking to enter the manycore realm.

While most discussions of manycore tend to focus on software development challenges or memory bandwidth limitations, an even more fundamental issue is the economic model that will drive these products into the marketplace. This is the topic that researchers Joseph Sloan and Rakesh Kumar at the University of Illinois at Urbana-Champaign addressed recently in a paper titled, Hardware/System Support for Four Economic Models for Many Core Computing (http://passat.crhc.uiuc.edu/rakeshk/techrep_economic.pdf).

In the current model, customers buy systems containing processors that satisfy the average or worst-case computation needs of their applications. This means when the application requirements change, either the user has to live with the pain of a performance mismatch or go through the expense of purchasing new systems (or new chips) to realign system performance with the applications. Sloan and Rakesh argue that as the number of cores increase, matching the performance needs with applications becomes increasingly difficult and the associated cost of buying unused computing power becomes more prohibitive.

The chip vendors are effected as well. As the number of cores increase, chipmakers must decide on the number of processor configurations to apply to a given market segment. If one can fit 100 cores on a die, how many different variations can be rationalized? Certainly not 100. Intel will have to deal with a smaller version of this problem in its upcoming 45nm Nehalem microarchitecture. So far, the company has described only 2-, 4- and 8-core processor designs for Nehalem. But with the combination of different cache sizes, memory controller architectures and clock speeds, the new processor family will probably end up being the largest Intel has ever supported. When tens or hundreds of cores are the norm, practical considerations will limit the number of unique designs to a very small subset of possible core layouts.

In their paper, Sloan and Kumar propose four related economic models (five actually) for manycore computing. The overall approach is that the customer will usually need fewer cores than are physically present on the chip, but at times may want to use more of them. The authors suggest that chips be developed in such a way as to allow users to pay only for the computing power they need, rather than the peak computing power that is physically present. This can be accomplished with small pieces of logic incorporated into the processor that enables the vendor to disable/enable individual cores. (Presumably, disabled cores would draw little, if any, power.) Enabling or disabling cores involves contacting the vendor, who authenticates the chip and sends activation codes that are used to unlock or lock the specified cores. The user ends up paying only for the desired computing power.

Of the models proposed, the most restrictive approach, the IntelligentBaseline model, forces the user to make a onetime decision about the number of cores needed. In this model, the vendor enables the user-selected subset of cores on the chip before shipping. Each of the other four models — UpgradesOnly, Limited Up/Downgrade, CoresOnRent and PayPerUse — offers a way to change the available processing power of the chip dynamically:

  • The UpgradesOnly model is based on the fact that computation requirements tend to increase over time. The user initially purchases enough cores to satisfy their current processing requirements. Additional cores can be enabled anytime during the processor lifetime, avoiding a system upgrade until the user needs more processing power than is physically available on the chip.
  • The Limited Up/Downgrade model recognizes the fact that average computational needs may sometimes increase temporarily. This allows the user to scale up and down as computational needs warrant. Downgrades involve disabling the number of selected cores and providing some sort of refund to the user.
  • The CoresOnRent model recognizes that there are environments where computational requirements change a lot even over a short periods of time (months). In this case, it may be more reasonable for the user to rent cores rather than own them. In this model, the user contacts the vendor to get access to a specific number of cores for a specific lease period. When the lease expires, the user has the option to renew the lease — with more or less cores.
  • The PayPerUse model is the most unrestricted model. It frees the user from estimating computing requirements at all and just bills the user based on actual core usage over a specified lease period. Like the CoresOnRent model, the user never owns the cores.

The underlying assumption to all this is that the cost of manufacturing the processor does not rise linearly with the number of cores on the die, which allows the chip vendor to sell underutilized processors at a profit. According to Kumar, this is indeed the case. His assumption is that the factors that determine the cost of manufacturing often have nothing to do with the number of cores on a die.

“Going from a one-core chip to a manycore chip may often represent increased costs — due to higher design/verification overhead,” explains Kumar. “But, multiplying the number of cores on a manycore chip will increase costs only marginally [since] the same design can be stamped multiple times to multiply the number of cores on a die. In fact, one of the main reasons for going to many cores is the high degree of IP reuse, i.e., the computational power can be multiplied without much increased cost.”

Kumar admits that chip costs are dependent upon the die area, and if the number of cores increased that area, costs would increase linearly as well. But his contention is the die area is usually fixed because of yield considerations, so the cost does not change much.

Another issue is the strong coupling of the memory system with the peak performance of the processor. Sloan and Kumar suggest that the memory architecture should be composable to support system balance.

“Designing a composable memory hierarchy may not be a big technical challenge,” contends Kumar. “It is just that a strong need was not there in the desktop and mobile domains. Composable memory hierarchies have often been designed in server systems. For example, Capacity on Demand for IBM System i offer clients the ability to non-disruptively activate (no IPL required) processors and memory. Same for Unisys as well as Sun systems too. You can simply have a middleware or microcode that allows/disallows access to certain regions of memory. Alternatively, some the techniques that we developed for supporting and enforcing the proposed models can also be used for memory hierarchies. Composability can also be attained by physically modifying the memory controller or disk controller to decouple memory regions.”

However, the authors admit that in some cases composability may be difficult to achieve because system architectures may require memory hierarchies that are closely coupled with the core count. They also point out a number of other areas of concern, including compatibility with software licensing models (already an area of contention for multicore processors) and privacy/security issues related to vendors having access to customers’ hardware.

“I think that there is no clear answer as to what are the new economic models that we need or whether we need new economic models at all,” says Kumar. “But now may be the time when a discussion needs to start among academics, industry people, and everyone else who has a stake in it. At least an awareness of the issues is needed.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This