Core Economics

By Michael Feldman

January 11, 2008

With all major chipmakers committed to the multicore path, it seems only a matter of time before manycore (processors with greater than 8 cores) becomes the standard architecture across all computing sectors. The 128-core NVIDIA GPUs, the Cisco’s 188-core Metro network processor, and the 64-core Tilera TILE64 processor are three early examples of this trend. The 80-core prototype demonstrated by Intel is an indication that even the most mainstream segments of the computer industry are looking to enter the manycore realm.

While most discussions of manycore tend to focus on software development challenges or memory bandwidth limitations, an even more fundamental issue is the economic model that will drive these products into the marketplace. This is the topic that researchers Joseph Sloan and Rakesh Kumar at the University of Illinois at Urbana-Champaign addressed recently in a paper titled, Hardware/System Support for Four Economic Models for Many Core Computing (http://passat.crhc.uiuc.edu/rakeshk/techrep_economic.pdf).

In the current model, customers buy systems containing processors that satisfy the average or worst-case computation needs of their applications. This means when the application requirements change, either the user has to live with the pain of a performance mismatch or go through the expense of purchasing new systems (or new chips) to realign system performance with the applications. Sloan and Rakesh argue that as the number of cores increase, matching the performance needs with applications becomes increasingly difficult and the associated cost of buying unused computing power becomes more prohibitive.

The chip vendors are effected as well. As the number of cores increase, chipmakers must decide on the number of processor configurations to apply to a given market segment. If one can fit 100 cores on a die, how many different variations can be rationalized? Certainly not 100. Intel will have to deal with a smaller version of this problem in its upcoming 45nm Nehalem microarchitecture. So far, the company has described only 2-, 4- and 8-core processor designs for Nehalem. But with the combination of different cache sizes, memory controller architectures and clock speeds, the new processor family will probably end up being the largest Intel has ever supported. When tens or hundreds of cores are the norm, practical considerations will limit the number of unique designs to a very small subset of possible core layouts.

In their paper, Sloan and Kumar propose four related economic models (five actually) for manycore computing. The overall approach is that the customer will usually need fewer cores than are physically present on the chip, but at times may want to use more of them. The authors suggest that chips be developed in such a way as to allow users to pay only for the computing power they need, rather than the peak computing power that is physically present. This can be accomplished with small pieces of logic incorporated into the processor that enables the vendor to disable/enable individual cores. (Presumably, disabled cores would draw little, if any, power.) Enabling or disabling cores involves contacting the vendor, who authenticates the chip and sends activation codes that are used to unlock or lock the specified cores. The user ends up paying only for the desired computing power.

Of the models proposed, the most restrictive approach, the IntelligentBaseline model, forces the user to make a onetime decision about the number of cores needed. In this model, the vendor enables the user-selected subset of cores on the chip before shipping. Each of the other four models — UpgradesOnly, Limited Up/Downgrade, CoresOnRent and PayPerUse — offers a way to change the available processing power of the chip dynamically:

  • The UpgradesOnly model is based on the fact that computation requirements tend to increase over time. The user initially purchases enough cores to satisfy their current processing requirements. Additional cores can be enabled anytime during the processor lifetime, avoiding a system upgrade until the user needs more processing power than is physically available on the chip.
  • The Limited Up/Downgrade model recognizes the fact that average computational needs may sometimes increase temporarily. This allows the user to scale up and down as computational needs warrant. Downgrades involve disabling the number of selected cores and providing some sort of refund to the user.
  • The CoresOnRent model recognizes that there are environments where computational requirements change a lot even over a short periods of time (months). In this case, it may be more reasonable for the user to rent cores rather than own them. In this model, the user contacts the vendor to get access to a specific number of cores for a specific lease period. When the lease expires, the user has the option to renew the lease — with more or less cores.
  • The PayPerUse model is the most unrestricted model. It frees the user from estimating computing requirements at all and just bills the user based on actual core usage over a specified lease period. Like the CoresOnRent model, the user never owns the cores.

The underlying assumption to all this is that the cost of manufacturing the processor does not rise linearly with the number of cores on the die, which allows the chip vendor to sell underutilized processors at a profit. According to Kumar, this is indeed the case. His assumption is that the factors that determine the cost of manufacturing often have nothing to do with the number of cores on a die.

“Going from a one-core chip to a manycore chip may often represent increased costs — due to higher design/verification overhead,” explains Kumar. “But, multiplying the number of cores on a manycore chip will increase costs only marginally [since] the same design can be stamped multiple times to multiply the number of cores on a die. In fact, one of the main reasons for going to many cores is the high degree of IP reuse, i.e., the computational power can be multiplied without much increased cost.”

Kumar admits that chip costs are dependent upon the die area, and if the number of cores increased that area, costs would increase linearly as well. But his contention is the die area is usually fixed because of yield considerations, so the cost does not change much.

Another issue is the strong coupling of the memory system with the peak performance of the processor. Sloan and Kumar suggest that the memory architecture should be composable to support system balance.

“Designing a composable memory hierarchy may not be a big technical challenge,” contends Kumar. “It is just that a strong need was not there in the desktop and mobile domains. Composable memory hierarchies have often been designed in server systems. For example, Capacity on Demand for IBM System i offer clients the ability to non-disruptively activate (no IPL required) processors and memory. Same for Unisys as well as Sun systems too. You can simply have a middleware or microcode that allows/disallows access to certain regions of memory. Alternatively, some the techniques that we developed for supporting and enforcing the proposed models can also be used for memory hierarchies. Composability can also be attained by physically modifying the memory controller or disk controller to decouple memory regions.”

However, the authors admit that in some cases composability may be difficult to achieve because system architectures may require memory hierarchies that are closely coupled with the core count. They also point out a number of other areas of concern, including compatibility with software licensing models (already an area of contention for multicore processors) and privacy/security issues related to vendors having access to customers’ hardware.

“I think that there is no clear answer as to what are the new economic models that we need or whether we need new economic models at all,” says Kumar. “But now may be the time when a discussion needs to start among academics, industry people, and everyone else who has a stake in it. At least an awareness of the issues is needed.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This