Core Economics

By Michael Feldman

January 11, 2008

With all major chipmakers committed to the multicore path, it seems only a matter of time before manycore (processors with greater than 8 cores) becomes the standard architecture across all computing sectors. The 128-core NVIDIA GPUs, the Cisco’s 188-core Metro network processor, and the 64-core Tilera TILE64 processor are three early examples of this trend. The 80-core prototype demonstrated by Intel is an indication that even the most mainstream segments of the computer industry are looking to enter the manycore realm.

While most discussions of manycore tend to focus on software development challenges or memory bandwidth limitations, an even more fundamental issue is the economic model that will drive these products into the marketplace. This is the topic that researchers Joseph Sloan and Rakesh Kumar at the University of Illinois at Urbana-Champaign addressed recently in a paper titled, Hardware/System Support for Four Economic Models for Many Core Computing (http://passat.crhc.uiuc.edu/rakeshk/techrep_economic.pdf).

In the current model, customers buy systems containing processors that satisfy the average or worst-case computation needs of their applications. This means when the application requirements change, either the user has to live with the pain of a performance mismatch or go through the expense of purchasing new systems (or new chips) to realign system performance with the applications. Sloan and Rakesh argue that as the number of cores increase, matching the performance needs with applications becomes increasingly difficult and the associated cost of buying unused computing power becomes more prohibitive.

The chip vendors are effected as well. As the number of cores increase, chipmakers must decide on the number of processor configurations to apply to a given market segment. If one can fit 100 cores on a die, how many different variations can be rationalized? Certainly not 100. Intel will have to deal with a smaller version of this problem in its upcoming 45nm Nehalem microarchitecture. So far, the company has described only 2-, 4- and 8-core processor designs for Nehalem. But with the combination of different cache sizes, memory controller architectures and clock speeds, the new processor family will probably end up being the largest Intel has ever supported. When tens or hundreds of cores are the norm, practical considerations will limit the number of unique designs to a very small subset of possible core layouts.

In their paper, Sloan and Kumar propose four related economic models (five actually) for manycore computing. The overall approach is that the customer will usually need fewer cores than are physically present on the chip, but at times may want to use more of them. The authors suggest that chips be developed in such a way as to allow users to pay only for the computing power they need, rather than the peak computing power that is physically present. This can be accomplished with small pieces of logic incorporated into the processor that enables the vendor to disable/enable individual cores. (Presumably, disabled cores would draw little, if any, power.) Enabling or disabling cores involves contacting the vendor, who authenticates the chip and sends activation codes that are used to unlock or lock the specified cores. The user ends up paying only for the desired computing power.

Of the models proposed, the most restrictive approach, the IntelligentBaseline model, forces the user to make a onetime decision about the number of cores needed. In this model, the vendor enables the user-selected subset of cores on the chip before shipping. Each of the other four models — UpgradesOnly, Limited Up/Downgrade, CoresOnRent and PayPerUse — offers a way to change the available processing power of the chip dynamically:

  • The UpgradesOnly model is based on the fact that computation requirements tend to increase over time. The user initially purchases enough cores to satisfy their current processing requirements. Additional cores can be enabled anytime during the processor lifetime, avoiding a system upgrade until the user needs more processing power than is physically available on the chip.
  • The Limited Up/Downgrade model recognizes the fact that average computational needs may sometimes increase temporarily. This allows the user to scale up and down as computational needs warrant. Downgrades involve disabling the number of selected cores and providing some sort of refund to the user.
  • The CoresOnRent model recognizes that there are environments where computational requirements change a lot even over a short periods of time (months). In this case, it may be more reasonable for the user to rent cores rather than own them. In this model, the user contacts the vendor to get access to a specific number of cores for a specific lease period. When the lease expires, the user has the option to renew the lease — with more or less cores.
  • The PayPerUse model is the most unrestricted model. It frees the user from estimating computing requirements at all and just bills the user based on actual core usage over a specified lease period. Like the CoresOnRent model, the user never owns the cores.

The underlying assumption to all this is that the cost of manufacturing the processor does not rise linearly with the number of cores on the die, which allows the chip vendor to sell underutilized processors at a profit. According to Kumar, this is indeed the case. His assumption is that the factors that determine the cost of manufacturing often have nothing to do with the number of cores on a die.

“Going from a one-core chip to a manycore chip may often represent increased costs — due to higher design/verification overhead,” explains Kumar. “But, multiplying the number of cores on a manycore chip will increase costs only marginally [since] the same design can be stamped multiple times to multiply the number of cores on a die. In fact, one of the main reasons for going to many cores is the high degree of IP reuse, i.e., the computational power can be multiplied without much increased cost.”

Kumar admits that chip costs are dependent upon the die area, and if the number of cores increased that area, costs would increase linearly as well. But his contention is the die area is usually fixed because of yield considerations, so the cost does not change much.

Another issue is the strong coupling of the memory system with the peak performance of the processor. Sloan and Kumar suggest that the memory architecture should be composable to support system balance.

“Designing a composable memory hierarchy may not be a big technical challenge,” contends Kumar. “It is just that a strong need was not there in the desktop and mobile domains. Composable memory hierarchies have often been designed in server systems. For example, Capacity on Demand for IBM System i offer clients the ability to non-disruptively activate (no IPL required) processors and memory. Same for Unisys as well as Sun systems too. You can simply have a middleware or microcode that allows/disallows access to certain regions of memory. Alternatively, some the techniques that we developed for supporting and enforcing the proposed models can also be used for memory hierarchies. Composability can also be attained by physically modifying the memory controller or disk controller to decouple memory regions.”

However, the authors admit that in some cases composability may be difficult to achieve because system architectures may require memory hierarchies that are closely coupled with the core count. They also point out a number of other areas of concern, including compatibility with software licensing models (already an area of contention for multicore processors) and privacy/security issues related to vendors having access to customers’ hardware.

“I think that there is no clear answer as to what are the new economic models that we need or whether we need new economic models at all,” says Kumar. “But now may be the time when a discussion needs to start among academics, industry people, and everyone else who has a stake in it. At least an awareness of the issues is needed.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This