Dan’s Cloudy Crystal Ball

By Daniel Reed, Microsoft Research

January 11, 2008

Research and Infrastructure Funding

As I write this, there is no joy in Mudville (U.S. science funding), as Casey (the university, national laboratory and technology industry community) has struck out in securing a substantive budget increase for the sciences. After the America COMPETES Act authorized major increases in 2007, with strong bipartisan support, we had high hopes for a corresponding appropriation. Alas, the omnibus appropriation bill includes little new money for science.

With a few notable exceptions, research and infrastructure funding will (at best) just keep pace with inflation. This does not bode well for computational and computer science. If you really want to feel depressed, read Norm Augustine’s new essay, Is America Falling Off the Flat Earth? This is a successor to the earlier Rising Storm report, and it is very sobering.

What can you do? First, don’t whine — that rarely impresses people in Washington. Rather, continue to make the case, via the venues and organizations where you are a member, that science and computing are critical enablers of economic growth, national innovation and education. Finally, it is especially important that we speak with a unified voice. A cacophony of confused messages will further delay the outcome we seek, for there are more supplicants and deserving ideas than available funding. As one Office of Management and Budget (OMB) examiner once remarked to me, “Rarely do I encounter people who say, ‘I’m dumb and I have too much money. Can you help me?'” We are definitely not dumb, and we absolutely have great ideas; we must keep doggedly pushing our message.

Coordinating Strategy and Spending

In addition to seeking new funding, we also face challenges in supporting our existing capabilities. As our HPC systems and software infrastructures have grown, so have our operations and maintenance costs. Gone are the days when a large system was 64 processors and an application was developed by a small research team. Today we are deploying systems with hundreds of thousands of processors and many petabytes of storage, executing software frameworks containing tens to hundreds of millions of lines of code. The research agendas of entire disciplines now depend on the long-term sustenance of this infrastructure. Simply put, computational science has become big science, with correspondingly large staffs and rising power, cooling and capital costs.

The National Science Foundation (NSF) and the NSF Office of Cyberinfrastructure (OCI) are struggling to balance community demands for new investments against infrastructure sustenance. For example, I believe over 80 percent of OCI’s budget is committed to extant projects, leaving little opportunity for new investment. Because so much of science now depends on computing, we must take a more holistic view of investment, examining scientific and technology priorities across all of the U.S. Federal agency portfolio and coordinating budgets accordingly. This is one of the key recommendations of the recent PCAST report on computing and a topic I discussed recently with Chris Greer, the new head of the National Coordination Office (NCO).

Outsourcing: Perhaps It Is Time?

In late November, I briefed the NSF OCI advisory committee on the PCAST report. The ensuing discussion centered on the rising academic cost of operating research computing infrastructure. The combination of rising power densities in racks and declining costs for blades means computing and storage clusters are multiplying across campuses at a stunning rate. Consequently, every academic CIO and chief research officer (CRO) I know is scrambling to coordinate and consolidate server closets and machine rooms for reasons of efficiency, security and simple economics.

This prompted an extended discussion with the OCI advisory committee about possible solutions, including outsourcing research infrastructure and data management to industrial partners. Lest this seem like a heretical notion, remember that some universities have already outsourced email, the lifeblood of any knowledge-driven organization. To be sure, there are serious privacy and security issues, as well as provisioning, quality of service and pricing considerations. However, I believe the idea deserves exploration.

Computing Clouds

All of this is part of the still ill-formed and evolving notion of cloud computing, where massive datacenters host storage farms and computing resources, with access via standard web APIs. In a very real sense, this is the second coming of Grids, but backed by more robust software and hardware of enormously larger scale. IBM, Google, Yahoo, Amazon and my new employer — Microsoft — are shaping this space, collectively investing more in infrastructure for Web services than we in the computational science community spend on HPC facilities.

I view this as the research computing equivalent of the fabless semiconductor firm, which focuses on design innovation and outsources chip fabrication to silicon foundries. This lets each group — the designers and the foundry operators — do what they do best and at the appropriate scale. Most of us operate HPC facilities out of necessity, not out of desire. They are, after all, the enablers of discovery, not the goal. (I do love big iron dearly, though, just like many of you.)

In the facility-less research computing model, researchers focus on the higher levels of the software stack — applications and innovation, not low-level infrastructure. Administrators, in turn, procure services from the providers based on capabilities and pricing. Finally, the providers deliver economies of scale and capabilities driven by a large market base.

This is not a one size fits all solution, and change always brings upsets. Remember, though, that there was a time (not long ago) when deploying commodity clusters for national production use was controversial. They were once viewed as too risky; now they are the norm. Technologies change, and we adapt accordingly. Having said that, I believe there will always be a place for purpose-built HPC facilities for cutting-edge computational science, just as large-scale experimental facilities are purpose-built for other sciences. However, day-to-day science may be better served by leveraging standard facilities and economies of scale. John West made some of these same points on insideHPC.com the other day.

Concluding Thoughts

I began on a low note, looking backward at our (currently) dismal state of research funding. Looking forward, I see great opportunities. We are living in a time of great technical ferment, with heterogeneous multicore chips coming sooner than most realize and the stunning growth of Web-delivered services and information. I am not yet sure what the future will bring, but the vision of a national Memex, Vannevar Bush’s 1940s dream of an information system capable of extending human capabilities, is within our reach.

—–

Daniel Reed is Microsoft’s Scalable and Multicore Computing Strategist and a member of the President’s Council of Advisors on Science and Technology (PCAST). The opinions expressed above are his, not necessarily those of Microsoft or the Federal government. Contact him at [email protected] or his blog at www.hpcdan.org.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire