Parallel Storage: A Remedy for HPC Data Management

By Christopher Lazou

January 18, 2008

The advent of more powerful compute systems has increased the capacity to generate data at a fantastic rate. To solve associated issues of data management, a combination of grid technology and other storage components are currently being deployed. Many solutions have been designed to address these petabyte-scale data management problems, including new software, NAS/NFS products and parallel storage solutions from IBM, Panasas and others. This involves handling and storing very large data sets accessed simultaneously by thousands of compute clients.

Extreme single projects such as the Linear Hadron Collider (LHC) at CERN are producing 15 petabytes of data each year. Raw data are distributed to Tier-0 data centres and then, after an order of magnitude reduction, are passed on to Tier-1 data centres and so on. This activity involves 130 computer centres of which 12 are very large.

In HPC there is a strong demand for parallel storage from users in the fields of computational physics, CFD, crash analysis, climate modelling, oceanography, seismic processing and interpretation, bioinformatics, cosmology, computational chemistry and materials sciences. The parallel storage requirement is being driven by the growing size of data sets, more complex analysis, the requirement to run more jobs, simulations with more iterations and the fact that the HPC solutions (Linux clusters) are using multicore processors and more nodes. Inherently the systems and applications are becoming more parallel, hence the requirement for parallel I/O increases.

Before we concentrate on HPC storage needs, let’s briefly review the disk storage market trends.

The disk storage market is expanding rapidly. By 2008 the HPC storage market will be well over $4 billion, according to IDC. The spread of broadband creates huge volumes of data, increasing data exchange in commercial transactions, email, images, video and music. Since interactions are global, this is happening 24 hours a day, 7 days a week. This data growth and non-stop operations put storage and data protection at the heart of this business, requiring high-speed processing for large data sets and high-speed backup for protection. Tape is insufficient for this purpose.

High-end NAS storage systems are likely to be using 10 Gbps TCP/IP (soon to be using 20 Gbps) and could have over 150 TBs in a single rack. It is often connected to SAN with a fibre cable and expandable into a cluster.

To deliver a “best-in-class” solution, the compute server and data handling are decoupled. They are highly complementary, but need to be scaled together for balance to handle several petabytes of active data. Although data patterns vary, the system needs to be designed from the ground up for multiple petabyte capability and several millions, or even billions, of files. It is therefore imperative that the data handling systems scale and the network bandwidth does not become a bottleneck.

In the rich digital content environment of today, the limitations of traditional NAS/SAN storage — scalability, performance bottlenecks and cost — are driving the industry to find new solutions. The response from the industry was the clustered storage evolution. Vendors claim that clustered NFS storage provides customers with enormous benefits in this digital content environment. The benefits include massive scalability, 100X larger file system, unmatched performance, 20X higher total throughput and industry-leading reliability. They also claim it is as easy to manage a 10-petabyte file system as a 1-terabyte file system. Clustered NFS solutions are fine for most large Web sites, but they simply don’t handle the kind of large files typical of most HPC applications very well.

A typical cluster computing architecture consists of a software stack of applications and middleware, tens or thousands of processors/clients, a high speed interconnect using, say, 10GigE, InfiniBand, Myrinet or Quadrics, thousands of direct network connections and hundreds of connections to physical storage.
 
Storage clusters, similar to compute clusters, transparently aggregate a large amount of independent storage nodes in order to appear as a single-entity. They typically use the same network technology as the compute cluster (InfiniBand or 10GigE), processing power (CPU, multicore, SMP), large amounts of globally coherent cache, and disk drives (up to 1 TB each).

A cluster file system is likely to be using industry standard protocols, NFS, CIFS, HTTP, FTP, NDMP, SNMP, ADS, LDAP and NIS for security, or some other product of similar standing. A cluster file system creates one giant drive or NFS mounted fully symmetric cluster. Such a system is massively scalable to multiple petabytes, easy to manage and has plenty of growth potential. The management of LUNs, volumes or RAID is taken care of by the storage cluster management system and is normally hidden from the user.

The future of HPC is tied to larger data sets, more CPUs applied to each problem, and a requirement for parallel storage. Today’s high density 1U servers (typically with 8 cores each) have increased the number of processing cores per node, but I/O bandwidth has not evolved at the same rate. The reality is that the number of cores per node is still increasing, however scientific and technical analysis requires a system that balances compute cores and I/O bandwidth.

With this increase in compute nodes, traditional single-server NFS solutions have quickly become a bottleneck. A first approach to solve this problem came in the form of clustered NFS. This however is falling short of HPC requirements. Major HPC sites are therefore not significantly deploying clustered NFS, but are rather moving directly from NFS to parallel storage (like Panasas, IBM GPFS and Lustre).

Government and academia users are already heavily deploying parallel storage and this is likely to become a requirement for all simulation and modelling applications deployed on clusters. Simply put, parallel compute clusters require parallel storage!

In the last few years, new storage companies have succeeded in taking a significant share of the file storage component of the HPC market from traditional storage providers such as Network Appliance, IBM, Sun, NEC and so on. For example, Panasas made news in 2007, when it was chosen to provide the data storage subsystem to support the RoadRunner petaflop Supercomputer, built by IBM to be installed at Los Alamos. It’s interesting to note that LANL chose Panasas parallel storage even over IBM’s parallel storage system, GPFS.

Another feather in Panasas’ cap is that the company scooped the annual HPCwire reader’s choice and editors’ choice awards for Panasas ActiveStor parallel storage and for the new Panasas Tiered Parity architecture respectively, at Supercomputing 2007 (SC07) in Reno, Nev.

To overcome the potential I/O bottleneck inherent in such a large-scale system as RoadRunner, Panasas offered PanFS as part of its ActiveStor Storage cluster architecture. This architecture is object-based and uses the DirectFLOW protocol to provide high scalability, reliability and manageability. It supports Red Hat, SUSE and Fedora, and its DirectorBlades manage and enable metadata scalability by dividing namespace into virtual volumes.

PanFS is promoted by Panasas as the “best-in-class” file system for HPC environments. The company claims the system eliminates bottlenecks, solves manageability problems and improves overall reliability.

When Len Rosenthal, Panasas chief marketing officer, was asked what differentiates Panasas from other cluster storage vendors he said: “The ‘parallel’ element of our offering differentiates us from the clustered storage vendors as we can provide massive speed-up for HPC applications and higher utilization of clusters through parallelism.”
 
“What is driving the need for ‘parallel storage’ in HPC is the combination of multiple factors: 1) Explosion of data sets due to the need to run large and more accurate models. 2) The massive use of x86 clusters and multicore CPUs, where users are applying 100s and 1000s of CPUs to simulation and modelling problems. 3) Currently deployed I/O and file systems based on NFS, and even clustered NFS, cannot handle the I/O requirements,” continued Rosenthal.

According to Panasas, the evolution to Parallel NFS (pNFS) is the ultimate proof that the computer storage world is going parallel. Even though pNFS is inspired by Panasas technology, IBM, Sun, EMC and NetApp are all committed to implementing pNFS. One presumes that despite being competitors, these companies also recognise the performance and scalability advantages of parallel storage, especially for future HPC; hence, that is why they are also working towards the standardisation of pNFS.

The merits of standards are well known. Standards drive product adoption, unlock markets, drive down costs, make interoperability possible and reduce risk to the client. The key storage vendors have existing incompatible parallel file system products with no interoperability. IBM has GPFS, EMC MPFSi (High Road), Panasas ActiveScale, HP has Polyserve and so on. Similar interoperability concerns are also present in open source Red Hat GFS and Lustre.

pNFS is an extension to the Network File System v4 protocol standard. It allows for parallel and direct access from parallel Network File System clients to storage devices over multiple storage protocols. It essentially moves the Network File System server out of the data path.

The pNFS standard defines the NFSv4.1 protocol extensions between the server and the client. The I/O protocol between the client and storage is specified elsewhere, for example: SCSI Block Commands (SBC) over Fibre Channel (FC), SCSI Object-based Storage Device (OSD) over iSCSI and Network File System (NFS). The control protocol between the metadata server and storage devices is also specified elsewhere, for example: SCSI Object-based Storage Device (OSD) over iSCSI.

In my view, this standards effort is admirable and should be supported across the storage industry. Potential benefits for users include improved sustained performance, accelerated time to results (solution) and parallel storage capability with standard highly reliable performance. It offers more choice of parallel I/O capabilities from multiple storage vendors, freedom to access parallel storage from any client, as well as mix and match best of breed of vendor offerings. It also contains lower risk for the user community, since client constructs are tested and optimised by the operating system of vendors whilst the customer is free from vendor lock-in concerns. In short, it extends the benefits of the investment in storage systems.

In summary, vendors and users are recognising that the future of high-end file storage is parallel. The early adopters like government and academia have adopted it, but anyone in the HPC space who is building clusters with 100s of CPU-cores and generating terabytes of data will require parallel storage.

IBM, Lustre and Panasas are the primary parallel storage systems deployed in government and academia, but Panasas is a strong viable alternative in providing parallel storage systems to large commercial companies, like those in the energy, manufacturing and financial markets. Panasas customers include: Boeing, BP, Petroleum GeoServices, Fairfield Industries, Hyundai Automotive Technical Center, Statoil, BMW/Sauber F1 Motor Sports, Paradigm, Northrop Grumman, PetroChina, Novartis and dozens of others. Thus, companies that are using HPC and trying to accelerate product development and make profits from their HPC infrastructure are increasingly turning to parallel storage as their preferred solutions. Remember the old saying: “The proof of the pudding is in the eating.”

—–

Copyright (c) Christopher Lazou. January 2008. Brands and names are the property of their respective owners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

House Bill Seeks Study on Quantum Computing, Identifying Benefits, Supply Chain Risks

May 27, 2020

New legislation under consideration (H.R.6919, Advancing Quantum Computing Act) requests that the Secretary of Commerce conduct a comprehensive study on quantum computing to assess the benefits of the technology for Amer Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to have bipartisan support, calls for giving NSF $100 billion Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers in Neuroscience this month present IBM work using a mixed-si Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This