Platform Computing CEO Looks to the Year Ahead

By Cheryl Doninger & Charles Coleman, Ph.D

February 1, 2008

Songnian Zhou, CEO of Platform Computing, is widely recognized as a pioneer of grid computing. His Ph.D. thesis established the field of distributed resources management and was the catalyst for the creation of Platform. An accomplished businessman, Songnian has built up Platform from a company of three employees to one that is 400-strong, and has 15 offices around the globe.

In this interview, SAS Institute’s Cheryl Doninger asks him his thoughts on how HPC and grid technology are evolving and how that’s driving user adoption and vendor opportunities.

Cheryl Doninger: What are your thoughts on how the industry has progressed in the last year?

Songnian Zhou: The HPC industry continued to grow and mature in 2007. This is driven by the maturing and expanding set of compute or data intensive applications. Clusters of commodity computers are ideal for most of these applications to scale out to tackle larger problems, with more accurate results, and in less time. The dramatic reduction in hardware costs compared to proprietary SMP and vector architectures led to rapidly expanding adoption of HPC systems and increase in not only node count, but also vendor revenue. This is a positive feedback loop of a successful market delivering compelling business value.

One sign of progress for this industry is the increasing expectation of integrated systems with not only the hardware but also management software delivered to end users, ready to run their applications. This is in sharp contrast to the “build your own” clusters of 5 or 10 years ago. Another sign is the build-out of technical data centers based on an enterprise grid architecture of integrated clusters. Such centrally managed systems are shared by users across a large organization and managed professionally to ensure availability and low cost.

Doninger: What opportunities and challenges will the industry face in 2008?

Zhou: With the flattening of processor speed and the complexity of multicore, how can the industry continue to meet the insatiable demand for computing power without introducing a lot of complexity? There is no single universal solution. Ironically, just as the industry converges on a set of standard technologies such as x86 processors, Ethernet and InfiniBand switches, and Linux and Windows OSes, it starts to diverge to a variety of technologies such as multicore, GPU, FPGA, and Cell processor. They can be a programming nightmare. There is more need than ever for application middleware and management software to hide the complexity of such technologies from programmers and users while exposing their power. Opportunities and challenges come in equal measure in such a changing market.

An opportunity and challenge beyond programming models is to provide emerging HPC users with simple, easy to deploy and use HPC environments. New HPC users with demands for increased processing power for their compute and data intensive applications are not experts in building and managing clusters, they are looking for turnkey solutions that just work.

Doninger: What should we be doing as (HPC/grid) hardware and software vendors to promote and help facilitate broader adoption of the technology?

Zhou: The components of the HPC stack need to fit and work together to deliver what users care about the most: ease of adoption, ease of use, and low cost of ownership. ISV’s need to develop applications and solutions that easily exploit cluster environments. SAS, for example, leads the market for enabling grid and cluster capabilities in their business intelligence and predictive analytics software. This speaks to the increasing value of grid adoption in just about any industry. As the number of business applications that can leverage HPC clusters grows, executives begin to see greater value in the clusters beyond their established space in engineering departments and financial analysis. So, the vendors need to cooperate to ensure their products interoperate. For example, that the applications are certified to run in the clusters users want to use, and the scheduling and cluster management software is fully tested with the OS and hardware. In the end, a cluster should be as simple as an SMP server with OS and management software fully tested and ready for applications. I call such an HPC cluster a “cluster server”, as it really should be a low cost and scalable server. Vendor cooperation and product integration is best done based on industry standards and open interfaces; otherwise, the combination of various components to be integrated will explode. The HPC Basic Profile developed with the support of Open Grid Forum is an example of such standard development. The Intel Cluster Ready program is an example of initiatives to ease the certification and adoption of cluster servers.

Doninger: What are the key sectors or industries being most innovative in their adoption of HPC technology?

Zhou: Innovations are coming from a wide variety of industries. For example, the Financial Services industry is leading the way to build internal utility-like enterprise grids operated by central IT providing services to the lines of business. The utility (or shared resource) model opens grid computing up to the entire organization and makes it possible for businesses to start looking at moving a wide variety of applications including business intelligence and analytic applications to the grid. The view from our industry is that the value of the grid scales exponentially as you add more applications to it. In addition to the traditional batch applications for overnight risk management and portfolio evaluation, pre-trade real-time pricing and analytics applications are supported by grid. The application programming model is distributed parallel SOA with many service instances loaded with data and ready to deliver results within milliseconds. In the manufacturing industry, HPC applications are expanding from CAE to manufacturing planning and integrated into the PLM (Product Lifecycle Management) process — call it HPC automation. With the tremendous power of HPC, business analytics applications are maturing to model and optimize businesses themselves, beyond traditional HPC applications modeling physical products. We continue to see HPC technologies being used in new applications to do things that were not possible before.

Doninger: What technology trends do you see as having the most impact in 2008 and why?

Zhou: Cluster is becoming pervasive, not just for the large enterprises but for users never using HPC in the past. It’s the single biggest factor for the growing adoption of HPC. Rather than getting constrained by the power of a desktop or a single server, run it on a cluster server. By sharing the cluster, users get to access even more resources at a lower cost.

Doninger: What effect does consolidation in the industry have on customers?

Zhou: Rational consolidation is a sign of a healthy and maturing industry. Instead of buying software and hardware components from a variety of vendors and putting the systems together, users would rather deal with fewer vendors and get more integrated systems. Consolidation can also lead to economies of scale for the vendors and lower costs for the users. User risks can also be lowered by the increasing viability of a smaller number of vendors. I expect each major part of the HPC systems, such as server, interconnect and management software stack, to be dominated by two or three competing vendors.

Doninger: How will the continued growth in multicore technology affect the HPC industry?

Zhou: The outlook is mixed. It is not clear to me at all whether a wide range of applications will be able to take advantage of the technology possibility of many-cores and squeeze themselves onto single chips. Remember that the popular CPU count for commodity servers stayed at the smallest plural, 2, with some quad-CPU and little beyond. The simplicity of technology, parallel I/O channels of multiple boxes, and independent failure mode of the components have been major attractions of a cluster. I expect this architecture to continue. multicore is a necessary evil the industry has to live with because we simply can’t expect processor speed to keep marching up. A cluster of multi-CPU boxes with each CPU containing multi-cores is complex enough for me.

—–

(c) Copyright Charles Coleman, PhD, and Cheryl Doninger, 2007

Cheryl Doninger and Charles Coleman, PhD are employees of SAS Institute in Cary, North Carolina, and contribute articles and content in the field of grid, high-performance, and bio-medical computing. The opinions stated here are expressly those of the authors and do not represent the opinions of SAS Institute or Tabor Communications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Explain the Asteroid that Killed the Dinosaurs

May 28, 2020

The supercomputing community has cataclysms on the mind. Hot on the heels of supercomputer-powered research delving into the fate of the neanderthals, a team of researchers used supercomputers at the DiRAC (Distributed R Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This