A Modest Proposal for Petascale Computing

By Michael Feldman

February 8, 2008

In typical forward-thinking California fashion, the folks at Lawrence Berkeley National Laboratory (LBNL) are already looking beyond single petaflop systems, even before a single one has been released into the wild. LBNL researchers have started to explore what a multi-petaflop computer architecture might look like. Even ignoring the challenge of software concurrency, they point out that power and system costs will determine how such machines can be built.

To some extent, these costs are already constraining what can be built in the pre-petaflops era. To date, no one has bought a maximally configured version of any current leading edge supercomputer — for example, an IBM Blue Gene, Cray XT, or NEC SX system — not so much because users couldn’t make good use of the computing muscle, but because the initial cost of the hardware and the power to run them would have been prohibitive.

At last year’s SIAM Conference on Computational Science and Engineering, LBNL researchers Lenny Oliker, John Shalf, Michael Wehner authored a presentation about what kind of supercomputer would be required for a climate modeling system with kilometer-scale fidelity. They estimated that sustained performance of 10 petaflops would be required for such an application. They then extrapolated the power requirements and hardware costs of a 10 petaflop (peak) computer based on dual-core Opterons and one based on Blue Gene/L PowerPC system on a chip (SoC) technology. The 10 petaflop Opteron-based system was estimated to cost $1.8 billion and require 179 megawatts to operate; the corresponding Blue Gene/L system would cost $2.6 billion and draw 27 megawatts. The system costs are scary enough, but with energy rates at over $50/megawatt-hour and rising, you’d never be able to turn the thing on.

Since that estimate was made in early 2007, AMD has (sort of) released the quad-core Opterons and IBM has delivered Blue Gene/P. If one were to extrapolate the half petaflop Barcelona-based Ranger supercomputer to 10 petaflops, it would require about 50 megawatts and cost $600 million (although it’s widely assumed that Sun discounted the Ranger price significantly). A 10 petaflop Blue Gene/P system would draw 20 megawatts, with perhaps a similar cost as the Blue Gene/L.

The Berkeley guys took this into account in 2007, extrapolating that over the next five years or so power and cost efficiencies in processor technologies would increase by a factor of 8 to 16. Such an increase in energy efficiency would at least make the power requirements of a Blue Gene-type system reasonable. But even with a 10X decrease in hardware costs, a $200 million system price tag seems daunting, even considering inflation. (If you’re holding euros you might be in even better shape in five years.) In either case, rising energy costs are likely to offset some of the increased power efficiencies.

Unfortunately, the type of climate model envisioned will require more like 10 petaflops of sustained performance, which means something like 100-200 petaflops of peak performance will actually be needed. So now we’re back to billion dollar systems using tens or hundreds of megawatts.

The fundamental problem is that as we move below the 90nm process node, power and die area (and thus cost) is increasing faster than performance. The challenge will become how to get more performance from fewer transistors. One avenue the Berkeley researchers are looking at is the use of embedded processor SoC technology to construct ultra-low power, low-cost systems. A few HPC system vendors have already traveled down this road, namely IBM with their PowerPC SoC for Blue Gene and SiCortex with their MIPS64 SoC-based clusters. By using a larger number of slower and simpler cores, overall performance per watt is greatly increased. As long as the software can scale as well, application performance per watt can be an order of magnitude better than an x86-based system.

But the Berkeley researchers have something more in mind. Rather than exploiting general-purpose embedded processors like MIPS and PowerPC, they are considering semi-custom ASICs that contain hundreds of cores and achieve much better power-performance efficiencies than more generic solutions.

In general, customized ASICs are very expensive to design and manufacture for anything other than high volume applications — hence the attraction of FPGAs. But the consumer electronics market is changing the rules. In an industry that traditionally looked to the desktop and server space for ideas, embedded computing is now where the action is. With the proliferation of mobile consumer devices, entertainment appliances and GPS gadgets, and with the industry’s obsession with hardware costs and power usage, embedded computing has become a major driver for processor innovation.

One area the Berkeley researchers are looking at is configurable processor technology developed by Tensilica Inc. The company offers a set of tools that system developers can employ to design both the SoC and the processor cores themselves. A real-world implementation of this technology is the 188-core Metro network processor used in Cisco’s CRS-1 terabit router.

For practical reasons, the cores tend to be very simple, far simpler than even a PowerPC or MIPS core. But this is exactly what you want for optimal performance efficiency. One of the most compelling aspects to the Tensilica technology is that the hardware design and the associated software toolchain (compiler, debugger, simulator) are generated in concert, giving developers a reasonable path to system implementation. Even though the resulting SoC will only serve a domain of applications, the extra initial cost may be more than justified when you’re dealing with large numbers of chips and unrelenting power constraints.

The advantages of this approach for petascale systems are evident when you compare the 10 petaflop Opteron-based and Blue Gene-based systems mentioned above with one constructed from configurable processors targeted specifically to climate modeling. The Berkeley guys estimate that a system built with Tensilica technology would only draw 3 megawatts and cost just $75 million. True, it’s not a general-purpose system, but neither is it a one-off machine for a single application (like Japan’s MD-GRAPE machine, for example). With such an obvious cost and power advantage, the tradeoff between general-purpose and special-purpose computing seems like a good deal — again putting aside the software issues.

The real paradigm shift is thinking about supercomputers as appliances rather than as general-purpose computers. The LBNL researchers are focused only on petascale-level science applications like climate modeling, fusion simulation research or astrophysics, where hardware and power costs would seem to prevent a scaled up version of current architectures. The real trick though would be to generalize the model for mainstream computing.

A glimpse of how this might take shape was revealed in a recent IBM Research paper that described using the Blue Gene/P supercomputer as a hardware platform for the Internet. The authors of the paper point to Blue Gene’s exceptional compute density, highly efficient use of power, and superior performance per dollar. Regarding the drawbacks of the current infrastructure of the Internet, the authors write:

At present, almost all of the companies operating at web-scale are using clusters of commodity computers, an approach that we postulate is akin to building a power plant from a collection of portable generators. That is, commodity computers were never designed to be efficient at scale, so while each server seems like a low-price part in isolation, the cluster in aggregate is expensive to purchase, power and cool in addition to being failure-prone.

The IBM’ers are certainly talking about a more general-purpose petascale application than the Berkeley researchers, but one aspect is the same: ditch the loosely coupled, commodity-based systems in favor of a tightly coupled, customized architecture that focuses on low power and high throughput. If this is truly the model that emerges for ultra-scale computing, then the whole industry is in for a wild ride.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This