A Modest Proposal for Petascale Computing

By Michael Feldman

February 8, 2008

In typical forward-thinking California fashion, the folks at Lawrence Berkeley National Laboratory (LBNL) are already looking beyond single petaflop systems, even before a single one has been released into the wild. LBNL researchers have started to explore what a multi-petaflop computer architecture might look like. Even ignoring the challenge of software concurrency, they point out that power and system costs will determine how such machines can be built.

To some extent, these costs are already constraining what can be built in the pre-petaflops era. To date, no one has bought a maximally configured version of any current leading edge supercomputer — for example, an IBM Blue Gene, Cray XT, or NEC SX system — not so much because users couldn’t make good use of the computing muscle, but because the initial cost of the hardware and the power to run them would have been prohibitive.

At last year’s SIAM Conference on Computational Science and Engineering, LBNL researchers Lenny Oliker, John Shalf, Michael Wehner authored a presentation about what kind of supercomputer would be required for a climate modeling system with kilometer-scale fidelity. They estimated that sustained performance of 10 petaflops would be required for such an application. They then extrapolated the power requirements and hardware costs of a 10 petaflop (peak) computer based on dual-core Opterons and one based on Blue Gene/L PowerPC system on a chip (SoC) technology. The 10 petaflop Opteron-based system was estimated to cost $1.8 billion and require 179 megawatts to operate; the corresponding Blue Gene/L system would cost $2.6 billion and draw 27 megawatts. The system costs are scary enough, but with energy rates at over $50/megawatt-hour and rising, you’d never be able to turn the thing on.

Since that estimate was made in early 2007, AMD has (sort of) released the quad-core Opterons and IBM has delivered Blue Gene/P. If one were to extrapolate the half petaflop Barcelona-based Ranger supercomputer to 10 petaflops, it would require about 50 megawatts and cost $600 million (although it’s widely assumed that Sun discounted the Ranger price significantly). A 10 petaflop Blue Gene/P system would draw 20 megawatts, with perhaps a similar cost as the Blue Gene/L.

The Berkeley guys took this into account in 2007, extrapolating that over the next five years or so power and cost efficiencies in processor technologies would increase by a factor of 8 to 16. Such an increase in energy efficiency would at least make the power requirements of a Blue Gene-type system reasonable. But even with a 10X decrease in hardware costs, a $200 million system price tag seems daunting, even considering inflation. (If you’re holding euros you might be in even better shape in five years.) In either case, rising energy costs are likely to offset some of the increased power efficiencies.

Unfortunately, the type of climate model envisioned will require more like 10 petaflops of sustained performance, which means something like 100-200 petaflops of peak performance will actually be needed. So now we’re back to billion dollar systems using tens or hundreds of megawatts.

The fundamental problem is that as we move below the 90nm process node, power and die area (and thus cost) is increasing faster than performance. The challenge will become how to get more performance from fewer transistors. One avenue the Berkeley researchers are looking at is the use of embedded processor SoC technology to construct ultra-low power, low-cost systems. A few HPC system vendors have already traveled down this road, namely IBM with their PowerPC SoC for Blue Gene and SiCortex with their MIPS64 SoC-based clusters. By using a larger number of slower and simpler cores, overall performance per watt is greatly increased. As long as the software can scale as well, application performance per watt can be an order of magnitude better than an x86-based system.

But the Berkeley researchers have something more in mind. Rather than exploiting general-purpose embedded processors like MIPS and PowerPC, they are considering semi-custom ASICs that contain hundreds of cores and achieve much better power-performance efficiencies than more generic solutions.

In general, customized ASICs are very expensive to design and manufacture for anything other than high volume applications — hence the attraction of FPGAs. But the consumer electronics market is changing the rules. In an industry that traditionally looked to the desktop and server space for ideas, embedded computing is now where the action is. With the proliferation of mobile consumer devices, entertainment appliances and GPS gadgets, and with the industry’s obsession with hardware costs and power usage, embedded computing has become a major driver for processor innovation.

One area the Berkeley researchers are looking at is configurable processor technology developed by Tensilica Inc. The company offers a set of tools that system developers can employ to design both the SoC and the processor cores themselves. A real-world implementation of this technology is the 188-core Metro network processor used in Cisco’s CRS-1 terabit router.

For practical reasons, the cores tend to be very simple, far simpler than even a PowerPC or MIPS core. But this is exactly what you want for optimal performance efficiency. One of the most compelling aspects to the Tensilica technology is that the hardware design and the associated software toolchain (compiler, debugger, simulator) are generated in concert, giving developers a reasonable path to system implementation. Even though the resulting SoC will only serve a domain of applications, the extra initial cost may be more than justified when you’re dealing with large numbers of chips and unrelenting power constraints.

The advantages of this approach for petascale systems are evident when you compare the 10 petaflop Opteron-based and Blue Gene-based systems mentioned above with one constructed from configurable processors targeted specifically to climate modeling. The Berkeley guys estimate that a system built with Tensilica technology would only draw 3 megawatts and cost just $75 million. True, it’s not a general-purpose system, but neither is it a one-off machine for a single application (like Japan’s MD-GRAPE machine, for example). With such an obvious cost and power advantage, the tradeoff between general-purpose and special-purpose computing seems like a good deal — again putting aside the software issues.

The real paradigm shift is thinking about supercomputers as appliances rather than as general-purpose computers. The LBNL researchers are focused only on petascale-level science applications like climate modeling, fusion simulation research or astrophysics, where hardware and power costs would seem to prevent a scaled up version of current architectures. The real trick though would be to generalize the model for mainstream computing.

A glimpse of how this might take shape was revealed in a recent IBM Research paper that described using the Blue Gene/P supercomputer as a hardware platform for the Internet. The authors of the paper point to Blue Gene’s exceptional compute density, highly efficient use of power, and superior performance per dollar. Regarding the drawbacks of the current infrastructure of the Internet, the authors write:

At present, almost all of the companies operating at web-scale are using clusters of commodity computers, an approach that we postulate is akin to building a power plant from a collection of portable generators. That is, commodity computers were never designed to be efficient at scale, so while each server seems like a low-price part in isolation, the cluster in aggregate is expensive to purchase, power and cool in addition to being failure-prone.

The IBM’ers are certainly talking about a more general-purpose petascale application than the Berkeley researchers, but one aspect is the same: ditch the loosely coupled, commodity-based systems in favor of a tightly coupled, customized architecture that focuses on low power and high throughput. If this is truly the model that emerges for ultra-scale computing, then the whole industry is in for a wild ride.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This