AMD Searches for an HPC Strategy

By Michael Feldman

February 15, 2008

Both Intel and NVIDIA have laid out a pretty clear strategy on how they’re going to attack the HPC market over the next year or so. Intel will continue to push out their 45nm Xeons, then the Nehalem processors, then Larrabee. NVIDIA will introduce 64-bit floating point support into their Tesla GPU computing line and continue to refine the CUDA programming environment. AMD, however, which is still reeling from a disastrous 2007, has seemed less focused on the high end of the market than ever before. The company’s stated mission to regain profitability in 2008 means it will refocus its energies on the volume market — desktop, laptop, mobile and embedded computing.

With that as a backdrop, I thought this might be a good time to talk with David Rich, director of marketing for HPC at AMD, and get a sense of the company’s strategy for high-end computing over the next year or two.

One of the first things that AMD would like to rectify this year is its visibility in the HPC community — or lack thereof. Rich admitted that they’ve been getting questions from people in the community wondering if they really care about HPC anymore. Not a good thing — especially when Intel is making a big push with its high performance Xeon processors, experimenting with 80-core teraflop processors and on-chip lasers, and just generally dominating the high-end computing conversation. “We recognize that we have not been as visible as we should have been [in the past], so we’re going to make an effort to be present at more HPC-oriented events,” says Rich.

Rich says they intend to make an extra effort to reconnect with HPC users this year, especially at the big conferences like the International Supercomputing Conference (ISC’08) in Dresden and the Supercomputing Expo and Conference (SC08) in Austin, Texas. AMD actually lucked out this year. Two of the companies big fabs are in Dresden, and Austin is a major business operations site. AMD is likely to use the home court advantage to have a larger than average contingent at the two biggest HPC events of the year.

One thing AMD still has going for it is the good will it has built up in the high performance computing community over the past few years due to the superior attributes of its Opteron processor. No doubt some of that good will has been eroded due to missteps in 2007, especially the failed Barcelona launch that left HPC OEMs looking longingly at Intel parts. Overall though, since 2005, better memory performance and scalability allowed Opterons to shine in the HPC realm when compared to their Xeon counterparts. Since most supercomputers, especially the top 10 variety, get planned two to four years in advance, AMD will still be able to ride this momentum at least until the end of the decade.

With the exception of SGI, every major HPC system vendor uses AMD chips today. Most vendors offer both Intel- and AMD-based systems, although Cray is AMD-only, at least until 2010. And despite Sun Microsystem’s embrace of Intel in 2007, the largest machines, like the TSUBAME supercomputer in Japan and the 500 teraflop system just deployed at TACC, are Opteron-based.

As I’ve written about before, though, the Opteron’s HPC advantage is about a year away from disappearing. In truth, the latest 45nm Xeons with the souped up front-side bus are already faster than the current 65nm Opterons on a range of technical computing applications. With Intel’s upcoming Nehalem processor family, scheduled to start rolling out in late 2008/early 2009, the company will be adding integrated memory controllers and QuickPath, a HyperTransport-like point-to-point interconnect that will replace Intel’s antiquated front-side bus. At that point, you have to ask how AMD intends to compete at the high end.

In the short-term, AMD expects Nehalem to initially be delivered in the 2P flavor for dual-socket systems. In that configuration, Intel will match up very well against the 2P Opterons. If AMD is still a process generation behind its rival, as it is now, Intel will almost certainly have the performance edge. In 2009, AMD plans to implement HyperTransport 3.0 on its processors, which, according to Rich, will allow them to retain a memory bandwidth advantage, at least in 4-socket servers.

“Then we’ll be in a situation that we’re actually already in,” says Rich. “Some applications will perform better on Intel [processors] and some will perform better on ours. People are really going to have to look at their applications to see where they get better performance. It’s going to be a neck and neck race.”

Although most people point to the Opteron as the area where AMD lost the high ground this year, the company’s ATI-derived GPU computing products for HPC got blind-sided by NVIDIA when it rolled out the Tesla product line and the associated CUDA GPU programming environment. AMD’s 64-bit FireStream stream processor was announced in November 2007 and is expected to be go to the market sometime this year. Rich says the FireStream hardware is a very competitive product, but admits they have been behind on the software front. According to him, though, they’re catching up quickly. For high-level development, AMD has developed Brook+, a tool that provides C extensions for stream computing on GPU hardware, and which is based on the Brook project at Stanford. Rich notes there are similarities with NVIDIA’s CUDA environment, but stopped short of saying that Brook+ would be CUDA compatible. When announced at the end of last year, AMD said the FireStream product would launch in Q1 of 2008, which is the same time frame targeted by NVIDIA for its 64-bit Tesla offering.

Going head-to-head against Intel and NVIDIA with CPU and GPU offerings, respectively, is a conservative strategy and maybe a problematic one, considering the economies of scale in play in the chip design and manufacturing business. But because AMD now owns both kinds of architectures, it should be able to use that advantage against its much larger rivals. That was certainly part of the rationale behind the ATI-AMD merger in 2006. If they ever intend to extract some synergy out of the CPU-GPU, now would be a good time to take the pole position. AMD’s CPU-GPU Fusion hybrid processor, now referred to as an accelerated processing unit (APU), is due out in the second half of 2009. But by this date, Intel may have its own version of a CPU-GPU processor.

Layered on top of the CPU, GPU, and APU product set is AMD’s Accelerated Computing strategy, which is intended to create a software stack for a heterogeneous computing environment. This will include elements such as drivers, APIs, compilers, and OS support. According to Rich, a lot of work has been going into this behind the scenes and AMD should be ready to elaborate on the strategy this spring, but it’s clear they intend to build on top of Torrenza, the first phase of AMD’s accelerated computing platform.

The big picture with accelerated computing is to create a system environment where different species of processors (CPUs, GPUs, FPGAs, and custom ASICs) can be brought together to provide a rich set of computational engines for application software. The acceleration effect is the result of mapping the different software components onto the most appropriate hardware. The software stack running on top of the hardware will provide a standard and, presumably, high-level way to access the underlying processors. More than anything, this sounds like a mainstream version of Cray’s Adaptive Computing vision, the supercomputer maker’s strategy to take HPC to the next level.

If AMD manages to deliver this new paradigm to the mass market, the company will have once again succeeded in making an end-run around its larger rivals. It wouldn’t be the first time.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire