Supercomputers for Finance: A New Challenge

By Julian Fielden

February 29, 2008

According to analyst group IDC, revenue for the overall supercomputing market grew a full 18 percent compared to the same period last year, to reach $3.0 billion in the third quarter of 2007.

Growth of this scale is the result of several factors:

  • In the university market, the traditional home of the supercomputer, growth is driven by increasing budgets swelled by European coffers, investment and knowledge partnerships with private firms and larger aggregated UK university and college department budgets.
  • In mainstream markets, growth is driven by a need for competitive advantage, efficiency and productivity gains and to some extent, Microsoft’s recently launched Compute Cluster Server broadening the market and encouraging widespread adoption of supercomputing technologies.

By any measure, finance is one of the strongest growth sectors for supercomputers, driven by ever increasing data volumes, greater data complexity and significantly more challenging data analysis — a key outcome from greater competition and regulation (through BASEL I, BASEL II, and Sarbanes-Oxley for example).

Financial organisations use the power and performance of supercomputers in a variety of ways:

  • Portfolio optimisation – to run models and optimise thousands of individual portfolios overnight based on the previous day’s trading results.
  • Valuation of financial derivatives — A re-insurance firm, for example, may need to value and compute hedge strategies for hundreds of thousands of policy holders in its portfolio.
  • Detection of credit card fraud – supercomputers enable a bank to easily run more fraud detection algorithms against tens of millions of credit card accounts.
  • Hedge fund trading — supercomputers allow for faster reaction time to market conditions, enabling analysts to evaluate more sophisticated algorithms that take into account larger data sets.

Today, financial organisations are aiming to increase the computational power and performance at their disposal in one of three ways.

Some financial organisations will work directly with universities and colleges to draw on the power and performance of their academic supercomputers.

For example, a financial analysis firm called CD02 has recently teamed-up with The Department of Computing at Surrey University on a three-year bid to look at ways to develop better pricing and risk analysis technology, which will ultimately help banks, hedge funds and investment outfits to trade in a financial instrument called a collateralised debt obligation, or CDO. This project, sponsored by the former DTI, centres on the power of the supercomputer to model huge problem spaces and simulations to explore very complex risk analysis — but is just one of the things the cluster will be used for.

Alternatively, for other financial organisations the supercomputer requirement will be met by new implementations — within their own organisations — using the very latest technology providing maximum power and performance. It generally depends on the types of applications running, but many financial organisations are turning to cluster-based supercomputers using low cost blade servers.

Lastly, for “early supercomputer adopters,” an increase in computational power and performance will not come from new implementations or working in partnership with universities and colleges, but from driving greater efficiencies from existing third and fourth generation supercomputer implementations.

All approaches will demand greater storage capacity and instant storage scalability to keep pace with data generation and ensure storage does not become an innovation bottleneck.

In fact, IDC predicts in 2008 the average worldwide growth for the supercomputing storage market will actually be higher than for servers, about 11 percent. IDC expects the market for HPC storage to reach about $4.8 billion in 2008 (2006: $3.8 billion).

Working directly with universities and colleges aside, implementing a new supercomputer or aiming gain efficiencies from existing supercomputer implementations, is not without problems.

Super Problems

IT managers responsible for supercomputer implementations already operational in financial organisations are often faced with piece-meal implementations created by generations of predecessors each adding their own features and functionality to the overall supercomputer. This can include a mix of hardware, a plethora of in-house developed code running on old operating systems and a selection of proprietary applications and other software.

IT managers are also being held back by the management and structure of their data centres – as it becomes clear that there is not a limitless supply of energy, space and budgets to run an efficient data centre. For example, plugging yet another server into the datacentre is no longer an option for companies operating in Canary Wharf, where companies are facing major difficulties securing extra power.

Although some companies are currently unaffected by power shortages, the cost of powering and cooling a data centre is becoming a pressing concern. A study published by consultancy BroadGroup found that the average energy bill to run a corporate data centre in the UK is about £5.3m per year and will double to £11m over five years.

Data centres capable of hosting a supercomputer must also be able to take heat away from the site – increasingly fewer and fewer buildings can cope. And, most importantly, there is simply no space available in London — our financial capital — for expanding data centres. While there are old factories elsewhere in the country, there are limitations on their use for new facilities.

From a storage perspective, as Moore’s law continues to ramp up processor speed, the storage bottleneck is becoming more pronounced to the end users. In many cases, IT managers have been burdened with conventional storage technologies that require customisation before they can be effectively applied in supercomputing environments. And, even then, it does not mean the technology is fully capable of meeting supercomputing performance, accessibility, capacity and availability requirements.

Finally, as data centre managers look to provide an IT infrastructure that can cost-effectively scale to meet rapidly changing business requirements, they are also evaluating switching and interconnect technology and realising, in many cases, whilst servers and storage may be suitable, the data transport mechanism between each is lagging behind.

Solution

For financial organisations either undertaking a new implementation or aiming to optimise an existing implementation, it is essential to take some precautionary steps:

1. Prepare and plan properly

Financial organisations must analyse and build a plan that considers current and future needs of the supercomputer in terms of power, cooling, space, effects on the environment, costs and management.

Naturally, it is equally important to consider user requirements for the supercomputer, including the need for future scalability and upgrades.

2. Select a qualified integrator

Financial organisations should look for a specialist supercomputer integrator, one that demonstrates grade one credentials in the delivery of a supercomputing project. The following factors should always be taken into consideration:

Understand the customer. Supercomputer integrators must demonstrate a thorough understanding of their customers’ markets. Integrators must be able to understand what customers are trying to achieve, why their research or project is important and why they are trying to do it in that way.

Demonstrate history. As budgets grow and aggregate, customers are more wary and cautious of investment. Customers are looking for integrators with experience, a history and proven track record in delivering supercomputer solutions.

Hardware vendor relationship. In many instances, supercomputer solutions built for customers are firsts, fastest, largest and often unique. Some integrators will ‘play one hardware vendor off against the other’, or propose solutions based on hardware outside of the traditional Tier 1 manufacturers. However, when you’re working on the leading edge, problems can occur so it is essential for customers to know that integrators have a close and long-term relationship with the primary hardware supplier.

The HPC ecosystem. A single IT vendor cannot always supply the whole supercomputer solution – server, storage, interconnect, operating system, applications, etc. Customers therefore need a well connected integrator that can call on existing technology partner relationships to enhance solutions from the primary hardware vendor.

Technology innovation. Customers look to integrators to provide solutions based on the best technology available. Integrators must therefore react to technology innovation quickly.

Protect the environment. Environmentally conscious customers will be looking for integrators that can meet not just their computing needs, but also their green needs and this means designing more complex solutions; for example using larger numbers of lower powered processors or vastly improved efficiency using virtualisation technology.

3. Make best use of technology

For any financial organisation looking to gain maximum power and performance from a new supercomputer server implementation (cost effectively) they should avoid proprietary hardware, which a manufacturer might choose to drop.

Servers

For server performance, it is also common sense for financial organisations to purchase blade server technology, which can use up to 50 percent less floor space in a data centre and up to 58 percent less energy than traditional servers.

For existing implementations, financial organisations should look for software, such as products from vendor Cluster Resources, that will help drive efficiencies and performance from existing cluster operations.

Software

The software can take full responsibility for scheduling, managing, monitoring and reporting of cluster workloads, maximising job throughput.

Storage

New supercomputers have a pick of storage technologies: RAID (Redundant Array of Inexpensive Disks), SAN (Storage Area Network), NAS (Network Attached Storage), HSM (Hierarchical Storage Management), tape libraries and silos.

Perhaps more important than the choice of storage hardware, financial organisations should introduce a scalable, high performance file system with Information Lifecycle Management (ILM) capabilities, such as IBM’s General Parallel File System (GPFS), to keep up with the demands of real time data processing.

GPFS enables additional storage capacity and performance to be added and operational in minutes with no interruption to users or applications, scaling to multiple petabytes with hundreds of gigabytes per second performance. Once the data has been processed, it can be seamlessly relocated to lower cost storage for archiving, providing the financial organisations with a single easy-to-manage pool of resources.

Interconnect

IT managers should also carefully consider switching and interconnect technology. Currently, an interconnect battle rages between InfiniBand and 10 GigE. IDC expects the use of both of these high-speed interconnect technologies to grow.

A pervasive, low-latency, high-bandwidth interconnect, Infiniband is backed by a steering committee made up of the world’s leading IT vendors, and is expected to win the battle.

Management

There are not many IT departments that have in-depth knowledge and experience of supercomputer systems. Without assistance from external suppliers it can take considerably longer to get equipment up and running, upgrades complete, software in place and systems configured to drive maximum power and performance.

Taking into consideration commercial confidentiality and data security, financial organisations should consider Cluster Management and Support Services — outsourced support operations — which enable financial organisations to focus all available IT department resources on non-cluster related queries and user problems.

Conclusion

Whether your financial organisation is aiming for a new implementation or to drive efficiency from an existing implementation, whether you have legacy problems or a green field site, one thing is certain: financial organisations can use the power and performance of a supercomputer to help deliver the most accurate, comprehensive and actionable intelligence, providing that all important competitive advantage.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This