HPC on the Fast Track

By Michael Feldman

March 14, 2008

Over the past five years, high performance computing has established itself as a mainstream technology for Formula One (F1) race car design. Because of the nature of the sport, Formula One requires extremely sophisticated engineering. Considered the elite form of auto racing (sorry NASCAR), these cars reach speeds in excess of 200 mph and run on the most challenging racing circuits in the world. Today, most of the top tier F1 teams have turned to HPC to accelerate race car development, especially aerodynamic design.

Last Friday, Red Bull Racing became the latest F1 team to announce an expansion of their HPC commitment. Red Bull Technology, the designer and manufacturer of Red Bull Racing’s Formula One cars, announced they would be adding Platform LSF (Platform Computing’s workload manager). The team will use LSF to schedule CFD simulation jobs across the group’s three IBM compute clusters.

The systems used by the Red Bull Racing team consist of two smaller clusters, with about 250 cores apiece, and a larger 1,024-core machine — all based on AMD Opterons. It wasn’t until they installed the large cluster last year that they started looking seriously at the Platform LSF product. At that scale, it become necessary to do a better job at managing all the CFD simulations. Manual submission of the jobs became impractical with the larger machine and with multiple systems. By adding LSF, the technology team is able to merge the clusters into one virtual system, enabling users in multiple departments to share computing resources.

I got the opportunity to speak with Steve Nevey, business development manager for Red Bull Technology, who gave me a sense of how critical HPC has become to Formula One teams, and to Red Bull’s in particular. Nevey’s own career has paralleled the rise of computing in Formula One. Originally a design engineer in the shipbuilding industry, he got into Formula One racing about 20 years ago as a CAD specialist with the Arrows team, which had an active F1 program from 1977 to 2002. In 1996, he joined Jackie Stewart’s new Formula One team (Stewart Grand Prix), the precursor of the current Red Bull team.

The Stewart Grand Prix team was set up at the invitation of the Ford Motor Company, and in 1999 the team was bought by Ford to become Jaguar Racing. For the next five years, they raced under the Jaguar brand. In 2005, Ford put the team up for sale, at which point it was acquired by Red Bull, one of the sponsors of Jaguar Racing. That same year the team competed under the Red Bull Racing name for the first time. Also in 2005, Red Bull bought the Minardi team and renamed it Scuderia Toro Rosso. The two Red Bull teams have been racing ever since.

When Nevey was originally hired as the IT manager of Stewart Grand Prix in 1996, he was just a CAD engineer. “But I was the first person to walk through the door who knew anything about computers,” he told me. “So they made me the IT manager.”

He did that for about 18 months until they hired a “proper IT manager,” at which point he was able to concentrate on engineering again. About five years ago, Nevey transitioned into more of a commercial role. Now, as the business development manager of the Red Bull Team, he’s responsible for identifying and managing partnerships with their various technical partners and suppliers, which includes companies such as ANSYS (Fluent), Siemens, MSC.Software, and now, Platform Computing.

When Nevey started with Stewart Grand Prix, they had 15 design engineers, which were doing mostly CAD work at individual workstations. Five or six years ago, they introduced computational fluid dynamics (CFD) into the engineering design workflow. At that time, they were just following the trend of other Formula One teams, like McClaren and Ferrari, who had started playing around with vehicle simulations.

“It was something we didn’t fully understand or understand the value of,” said Nevey. At the time, the team’s aerodynamic engineers were telling management that the CFD simulations took too long to be really useful — they had less than a ten-node system at the time — and they couldn’t validate the results. It soon became apparent that they had no justification to use HPC for race car development, so they shut down the system.

Undeterred, they developed a business plan to show how the use of HPC could be cost-effective for the program and raise the bottom line. The plan integrated the CFD simulation work into the overall development process, maximizing both vehicle design work and wind tunnel testing. Today, Nevey says the Red Bull Technology team is up to about 150 engineers. “CFD is now absolutely vital to what we’re doing,” he said. “If we didn’t have it, it would leave a big gap.”

In Formula One culture, the conventional wisdom is that the CFD simulations don’t replace the wind tunnel; it just allows a lot more design iterations to take place before scaled-down (60 percent) components get built and sent to the tunnel for validation. After the tunnel, full-sized parts are constructed, which are then installed on the vehicle for final testing. Wind tunnels tend to be in constant use, so the more design work you can do inside the computer, the better.

CFD is used to design body components in such a way as to balance the aerodynamics of downforce and drag. Downforce is created by the wings and other aerodynamic components of the car to push it down onto the track (opposite of what occurs on airplane wings). At high speeds, this means the weight of the car is up to four times heavier than its weight while at rest. More downforce puts greater load into the tires for better grip, which allows for better cornering. But a wing design that maximizes downforce, also raises drag, which slows the vehicle down on the straight sections of the circuit. The CFD engineers are constantly balancing the compromise between the two.

The calculation for specific body components has to take into account individual racing circuits. Unlike NASCAR, which is typically run on oval tracks, F1 circuits are quite variable in shape and features. For example, the Monaco Grand Prix is known for being an extreme high downforce circuit, with lots of tight corners. So the engineers will be looking at big wings to push the car onto the track, with less emphasis on drag. Toward the end of the season, the lowest downforce circuit, the Autodromo Nazionale Monza in Italy, will require body components that produce a much lower aerodynamic profile for those long straight sections.

Racing conditions such as weather and the amount of rubber on the track (from previous races) can also effect race time design changes. While they aren’t allowed to dynamically switch out body elements during the event, they can change, for example, the angle of a wing flap. While these types of adjustments are usually performed without the benefit of last minute computer simulations, it’s certainly not a stretch to think that more complex modeling could be used for race day decisions in the not too distant future.

With all the merchandising money at stake (reportedly over a billion dollars per year) and with such a fierce level of competition, Formula One teams are likely to take advantage of any edge afforded by high end computing. Although most of the simulation work is currently focused on aerodynamic design, HPC software is also being used for FEA stress analysis and vehicle dynamics, as well as for validation of the final design.

And while computing hasn’t replaced wind tunnel testing, those days might not be too far off. Nevey recalls a number of instances last year when they were able to develop some aerodynamic components that went straight onto the car for initial testing, skipping the wind tunnel step entirely. As the engineers figure out how to do more sophisticated simulations, there should be even greater incentive to add more HPC resources into the mix. At Red Bull, there are already plans in the works to multiply their computational power by a factor of four.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This