Procter & Gamble’s Adventures in High-End Computing

By Michael Feldman

March 21, 2008

Software is one of Tom Lange’s favorite subjects — or least favorite, depending on his mood. Lange heads the modeling and simulation group at Procter & Gamble (P&G) and is responsible for enlisting computer technology to help develop the company’s vast array of consumer products. He is well-know in the HPC community as an outspoken evangelist for high performance computing in industry.

Last week, Lange spoke at the HPC Horizons Summit in Palm Springs, where a number of industry luminaries provided their perspectives on how users are pushing the envelope of HPC usage. This two-day event was organized by Tabor Communications, the parent company of HPCwire, and provided an opportunity for the HPC digerati to talk about emerging applications and bask in the 85-degree desert sunshine. Lange’s presentation was a mostly feel-good story of how one company has used HPC to help create some common everyday products.

With over $76 billion in revenue last year, Procter & Gamble is the largest consumer goods company in the world. The company uses high-end computing to design, test and manufacture a wide variety of consumer products (as well as the packaging they come in). A short list of HPC-enabled products includes Pampers diapers, Downy bottles, Braun shavers, and Pringles potato chips. As in many HPC applications, the idea is to replace physical research and development with computer simulations. When you’re talking about designing leak-proof diapers, the advantages of avoiding wetlab conditions become more obvious.

Unlike HPC-crafted products such as commercial airplanes or Formula One race cars, P&G consumer products are produced by the billions. So materials and manufacturing costs are as critical to product design as usability. With an average P&G product price of under $10, there’s a huge incentive to minimize packaging and simplify assembly. Usability is still a big challenge since fussy consumers are going to demand an array of conflicting characteristics: Materials must be strong, but soft, even when wet; they must stretch but not break. Liquid mixtures must be easy to dispense, but be thick enough to stay in place when they’re applied. Packages must be strong, lightweight, leak-proof, safe to handle, but easy to open.

Something as apparently simple as Tide laundry detergent could require as much computer modeling sophistication as a Boeing 747. For example, liquid detergent may require three distinct modeling applications — one for soap characteristics, one for the bottle design, and one for filling the bottle on the assembly line. So this single product may suck up different computing resources and require a complex set of software that involves CFD, FEA and CAE codes.

On the positive side, computing is getting cheaper every year. P&G has seen the price of hardware drop from around a $1.50/CPU-hour in 2001 to $0.15/CPU-hour in 2007. Whereas other manufacturers have used the lower-cost FLOPs to reduce IT expenditures, P&G wants to take advantage of the increased price-performance to expand research. With more than 40 individual brands that net over a $500 million each in revenue, there is plenty of incentive to improve the manufacturability and usability of their product set.

According to Lange, the next set of challenges for designing consumer goods will be to inject more realism into the simulations, for example, using nanoscale chemistry modeling to predict the biochemical behavior of skin lotions, or using biomechanical simulations to measure the ability of a child to open a lid. This type of application is within reach today, but usually only on top tier supercomputers. Since industry tends to lag the top systems by a generation or two, the current teraflop systems used by large commercial users like P&G are five or ten years behind the curve, performance-wise.

Lange is actually much less worried about getting enough computing muscle than he is about the software. By 2010, he expects the cost of computing hardware to drop to just a few cents/CPU-hour. But since that hardware will be implemented with lots of parallelism, the current core-based licensing models will put software costs onto a Moore’s Law trajectory. Like many users, Lange is frustrated that the advantages of more powerful hardware are being overwhelmed by the increasing cost of the software.

He’s not alone. There was plenty of angst expressed about software costs during the HPC Horizons Summit. Both vendors and users see licensing costs as a big impediment to expanding HPC usage. Part of this problem is cultural. People aren’t yet used to the idea that software is a much more valuable commodity than hardware, since, up until recently this wasn’t the case. Also, in an era when open source is making software tools and operating systems widely available, people can convince themselves that “free” software has no cost associated with it.

Lange admits he doesn’t know how the marketplace will resolve this. P&G uses software from both commercial sources, like ANSYS, and DOE national labs, like Lawrence Livermore and Sandia. Up until now at least, Lange’s simulation and modeling group has not attempted to maintain codes internally because of manpower costs. Developing in-house codes represents the ultimate in control, but for P&G that would represent a significant shift in computing strategy. Lange admits that the establishment of a large in-house software engineering group is not a good fit with the business culture at P&G, which stresses long-term career paths and promoting from within. The company prefers to concentrate on what it does best — understanding consumer needs and making the products that fill those needs. Ultimately, P&G would like to be a user of HPC and not a developer. I’m guessing, that attitude reflects the feelings of most commercial users.

At the end of Lange’s presentation, he asked a number of tough questions about the business case for software in an increasingly parallel world:

  • If commercial software is not affordable, are users willing to write our own?
  • Are the ISVs investing enough in R&D to parallelize their codes?
  • Are the DOE national labs seen as competitors with ISVs?
  • Is shareware and freeware development a religious/political choice?
  • Are we investing enough in software research?

I didn’t notice any commercial application software vendors at the HPC Horizons Summit, but it would be great to see some of the ISV leadership weigh in on this discussion. If a company like Procter & Gamble with deep pockets and a obvious commitment to HPC starts to balk at software affordability, it’s probably time for the whole community to get serious about this topic.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This