Transforming Big Data

By John E. West

March 28, 2008

The increasing spread of sophisticated instrumentation, and the dramatic increase in the capability and use of computers in all fields of human endeavor, have led to a dramatic growth in the amount of data we humans collect. A recent study by IDC puts the amount of data produced in 2007 worldwide at 281 exabytes, a 56 percent increase over the amount of data produced in 2006. While that number itself is subject to some debate, the trends are real.

What kind of data is this? A lot of it, according to IDC’s report, is digital imagery, both moving and still. But much of it is data measured or captured as a result of scientific and business processes: data streams related to national security and homeland defense, personal and organizational financial transactions, massive space and earth observing systems, and so on. The amount of data produced by the financial markets alone quadrupled last year.

But data isn’t information — in order to influence a course of action data have to be processed, assimilated and put in context for the people or systems making decisions. The field of data intensive computing, which has been around for a while now, is all about developing the systems and software that can facilitate this data transformation.

At the National HPCC Conference in Rhode Island this week, John Grosh, director of the Center for Applied Scientific Computing at Lawrence Livermore National Lab, gave a talk that touched on some of the work Livermore is doing in this area. The Livermore team is working, as are many others in the field, to identify the machine architectures, software design points, and tools needed to enable rapid processing of stored data in applications ranging from security and intelligence to climate science. The issue that they are addressing, even with “small” datasets in the terabytes, is that the interaction with disks in a traditionally architected HPC system can be quite painful when I/O performance matters. Some vendors in HPC are addressing this concern by building large shared memory systems to hold the data in-memory. This is an effective solution, but it can also be expensive. The Livermore team is looking at alternative architectures from the business intelligence (BI) community, along with technologies like NVRAM (non-volatile memory), flash memory drives, and so on.

As Grosh pointed out, the shift that is needed goes to the core of system design. Disk vendors have largely focused on capacity rather than bandwidth, and many supercomputing applications avoid I/O as much as possible. In data intensive applications, this view is turned on its head: it’s all about moving stored data in for processing, and pushing transformed data out. According to Grosh, NVRAM technology may be very important on the hardware front in the future of data intensive supercomputing. It offers an architecturally “clean slate” that doesn’t carry any of the design culture of disk storage along with it, and it may be able to fill the gap between DRAM and disk with respect to both price per capacity and access speed.

Pervasive Software is one of the companies working on the software front of the data intensive computing space, developing software architectures to support intensive analysis of large data stores. Pervasive’s DataRush product is designed primarily for single address space environments of the kind you’ll find in multi-socket, multicore nodes on today’s hardware. The framework is based on a dataflow model, written in Java, and provides high level primitives that mask the complexity and details of the parallel implementation. According to Pervasive CTO Mike Hoskins, DataRush is a “next generation massively parallel data pump.”

There is a lot in that paragraph to give lifetime HPTC professionals a chill. “Masking complexity” has long been synonymous with prohibiting access to the very details that determine performance. And Java? Isn’t that too slow?

Hoskins stresses the need to act on the reality that the value elements in supercomputing are not the machines anymore, but the people. “A lot of the supercomputing industry is stuck in a bit of a time warp,” said Hoskins speaking to HPCwire in April of 2007. “I started with mainframes and assembly programming. In those days machines were expensive and humans were cheap. Now, it’s turned around completely. The constant focus on machine performance really misses the boat.”

Pervasive is targeting DataRush — at least initially — in areas like business, bioinformatics, and finance; domains where Java programming is already popular. And recent versions of Java have overcome many of the earlier performance problems associated with garbage collection, making it a viable option for in some cases.

Jim Falgout, solutions architect with Pervasive, explains that a core advantage of the DataRush approach with Java lies in its ability to dynamically adjust to available resources. Data flows and processing steps are described in an XML scripting language that moves data through the system, and transforms it by the application of “operators” such as sort, join, average, and merge. (As of later this year the XML description can be replaced by a Java description of the dataflow.) The framework includes basic operators, and users add new operators to support their specific needs through an SDK. DataRush dynamically assembles the bits of code it needs at runtime and, if desired, users can help the software adapt to varying amounts of available processing power and varying problem sets by binding in operators and operator implementations that are better suited for the situation at hand. This is reminiscent of the poly- or multi-algorithmic work that has been going on in traditional HPTC for some time, and has the potential to offer real advantages.

An article in Java Developer Journal this week by Pervasive’s Falgout outlines an application of DataRush dealing with large volumes of data, and the highlights some potential advantages that processing outside an RDBMS offers for structured analytic queries. In the article Falgout describes an effort to de-duplicate a database of tens of millions of records. At the end of one month of development and tuning, Falgout’s team was able to demonstrate a record comparison rate of more than one million candidate pairs per second running on a four way quad-core Xeon HP Proliant node.

Another interesting outcome arose from tuning the report used to roll up results for the customer. Their customer had developed a SQL query to avoid presenting duplicate decision pairs in selecting which member of a possible duplicate set should “win.” The query ran in 3 hours on 14 million matched pairs. Using DataRush Falgout’s team coded an operator in Java to perform the logic previously handled in the SQL, and reduced the runtime to only 22 seconds.

There is a lot that we still don’t know about the architectures, tools and techniques needed to effectively process the data we are amassing at work and at play in much of the first and second world. But, as with multicore programming techniques, data intensive computing provides the HPC community the opportunity to leverage products and models developed in the commodity community to advance the state of the art in our own field.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The TianHe-2A will use a proprieta Read more…

By John Russell

SC17 Preview: Invited Talk Lineup Includes Gordon Bell, Paul Messina and Many Others

September 25, 2017

With the addition of esteemed supercomputing pioneer Gordon Bell to its invited talk lineup, SC17 now boasts a total of 12 invited talks on its agenda. As SC explains, "Invited Talks are a premier component of the SC Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Fo Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This