Building a Computing Resources Exchange from the Ground Up

By Nicole Hemsoth

March 31, 2008

Digital Ribbon CEO Erik Weaver discusses his company’s vision to create a pure exchange for computing resources, as well as the fine points of monetizing computing resources, turning a profit in the utility computing space, and what consumer applications might become the next killer apps.

GRIDtoday: First, what is Digital Ribbon? What kind of service do you provide to customers? Do you host applications, or just offer computing?

ERIK WEAVER: Digital Ribbon Inc. (DRI) is an aggregator of computation resources representing over 10 million monthly core hours; we are the foundation of an early stage exchange for computational resources. Our primary deliverables are computational resources (CR), which consist of computing power, memory, storage, security and bandwidth in flexible volumes.

DRI’s vision is to develop into a pure exchange for CR, wherein clients can both list resources and buy resources in a secure standardized environment globally. Our current practices leverage partner companies’ resources through a business-to-business model called cogeneration, which sets us apart from EC2 and Network.com. Another variance is each contract allots a predefined amount of time for consulting at no additional charge to ensure a seamless transition to the resource.

Digital Ribbon’s clients are very concerned about the nature of the project running on their systems. We do not typically host applications, but we have early on explored hosted products such as Maxwell Render, Blender and Callminer. Hosting applications moves into the next evolution toward products or end-user consumables. Our primary focus is the platform that delivers raw resources that others might use to manufacturer secure consumable products.

Have you ever read “Empires of Light” by Jill Jonnes? One of the fundamental epiphanies or transformations in electricity was the building of the Niagara Falls electrical plant. For the first time in history, vast amounts of electricity were available at affordable rates in varying quantities that could be accessed at a distance. Out of this revolution emerged companies such as Alcoa. The electricity allowed them to run blast furnaces at temperatures and costs that made aluminum cost effective to produce. This mirrors the place in history at which computational resources currently are. Making vast quantities available on demand while leveraging economies of scale to lower cost opens the door to a whole new generation of products once unattainable.

Gt: From where do DRI’s resources come? How do you guarantee service levels and availability?

WEAVER: Our resources come from partner companies. Without getting too elaborate, we use a cogeneration model to leverage a varying list of for-profit and not-for-profit organizations looking to maximize system resources return. Basically, we allow any group to register their resource, then evaluate it for output, architecture, bandwidth and SLA compliance. After comprehension of the resource, we attempt to best marry it to potential contracts.

As for the question of SLAs, each resource has a varying service level agreement predefined. There are penalties built into the contracts for failure to meet SLA agreements. Up to this point, we have yet to experience a failure to meet standards, however the bulk of our current clients have mid-level SLAs, not “99.9 percent” contracts. One of our very first jobs had a lightning strike on the facility while running a job, which knocked power out for six hours.

DRI was originally formed in 2000 with the intent of building clusters and selling time on the systems as additional revenue stream. Our change came in 2003 when an intern forced to read the latest Globus book pointed out in his presentation the concept of service requestor, service provider and a service registry to handle such transactions. At that point, we had datacenters and clusters, and we realized this was not the model to reach our goal of an exchange for computational resources, so we relinquished our hard resources.

Gt: How flexible is DRI’s resource pool? Can you provide different products or technologies depending on a user’s needs?

WEAVER: Our model of leveraging a cogeneration model has opened the door to a plethora of varying resources, which we could have never supported in a traditional datacenter model. Our resources cover almost all major manufacturers, architectures, processors, interconnects, bandwidth/connections, storage volumes and operating systems. DRI’s total available capacity at this point is 329,760 daily core hours or 10,030,200 average monthly core hours.

We are also developing partners that build out resources for large contracts. One example of this is a job we are bidding in which we would deliver 500,000-plus daily core hours across a grid of resources. Other areas we are exploring are partnerships with companies such as Panasas, wherein clients could see the benefits of their technology by testing their technologies on large-scale systems.

Gt: How is pricing handled? Is it a flat rate? Pay per use? Some other model?

WEAVER: Traditionally, we deliver a set number of computational hours over a predefined timeline. We also define storage, bandwidth, resources definitions, max number of cores and consulting hours. Any overages have predefined rates, very much like a cellular contract.

For example: a “peak contract” may have 10,000 core hours with a max capacity of 400 cores, 20 hours of consulting, OC3 connection and TB of data backup.

Gt: How do you determine the cost of computing resources? Is there a strategy around monetizing something as seemingly nebulous as computing?

WEAVER: This is a question I have seen a lot: “How do we price this?” I believe someone developing hard resources must first understand “the bottom,” or what does the electricity cost to maintain the system and facility housing it. We call this the bottom because you must know the lowest number you can possibly sell your resources for, beyond that obsolesce curve for the life of the fixed asset and all the other usual suspects, like support and maintenance. Lucky for us, our business model avoids all the tough questions — we immediately understand the cost and resources available, thus creating transparency in the market. This transparency is a critical step in building a market for and monetizing CR.

We are very involved in the development of standardization and monetization of CR; this is at the core of what we do. In this effort, I would like to first clear up a few misconceptions:

  • Fallacy No. 1: “All computing power is equal.” A few years back, I was speaking with someone from EC2 and they made the statement, “We are going to kill Sun with our rates of .15 an hour.” I proceeded to explain that 1.75 Ghz processors at .15 cent a CPU dose not equate to dual-core 3 Ghz with 2GB of RAM per processor and high-speed interconnects. The volume of processing each system yields in an hour greatly varies, and the additional RAM adds a tangible value.
  • Fallacy No. 2: “This is all about CPU power.” Most current contracts are sold by CPU hour, with a few specialized groups selling by the MHz hour. This is not an accurate view of consumption and demand and the market matrix. A more accurate term is computational resources. Computational resources refer to several aspects important to a consumer. Bandwidth, bemory, disk storage and network interconnects are as important as capacity, peak yield, processor type (64 bit vs. 32.) and availability. CR is the commodity of the future.
  • Fallacy No. 3: “The commodity solution will be identical to current electrical kilowatt-hours.” The development of the market will be a little closer to grain markets. Kilowatt-hours does not compare to a unit of CR due to the number of variables represented by CR. For example, hard red spring wheat is traded in grain futures, as opposed to a kilowatt-hour-type model. The wheat market has multiple adjectives to define the deliverable product, and the CR market also has very critical distinct descriptions in deliverables.

Gt: I understand you’re working on some standards around monetization? Can you explain those efforts?

WEAVER: We are currently looking into defining “petaflop” as our kilowatt. In defining a standard, we have chosen to take the path toward volume/output, utilizing Linpack as a yardstick that gauges the yield of the system as a whole.

Please understand, the creation of such a standard is still nascent and requires imput and acceptance from many. As such, we are open to productive feedback. As for our effort for acceptance, we are talking with many leaders in the community and seeking their opinion. We are also moving toward writing our contracts in both core hours and petaflop deliverables.

Gt: What kinds of benefits do your suppliers experience? Why would an organization want to sell resources?

WEAVER: The benefits are maximization of fixed resources. Now the IT department is a revenue source and not just an expense. This is a very powerful shift in organizational dynamics.

Gt: How does DRI’s service differ from other high-performance utility services, such as Sun’s Network.com, IBM’s Deep Computing On Demand, etc.?

WEAVER: Each of these services has its own unique market segment and a solid place in its focused field. One of the biggest differences is our ability deliver across such a wide variety of solutions and resources. We also have low overhead and a grassroots growth that snowballs as user participation increases. As for our unique market segment, having a Windows cluster solution has been very beneficial, as has been our ability to deliver large-volume, low-cost bulk contracts.

EC2 was originally developed as an evolved Web-hosting platform and has evolved into a more robust cloud solution. Network.com has taken the products route, which offers greater profitability. IBM’s solution is designed around secure lock-box volume processing. Again, each is succeeding in their market segment, helping bring new users to this type of solution.

Gt: In general, how viable is the utility model for actually turning a profit? What does a utility service provider need in order to be successful?

WEAVER: I personally believe Sun could be turning a profit now, if they are tightly managing their expenses. Now it’s probably not a large profit, but the industry is rapidly growing and they have positioned themselves well. I think anyone building and maintaining clusters will have a challenging time at a for-profit business without products. However, most groups we work with that have supercomputers own them, with other primary objectives for the systems. As for my advice: If you are going to be successful, you must understand costs, especially operational expenses such as electricity, be able to understand vacillations in consumption, and have consumable end-user products.

Gt: How many users does DRI currently have, and what kinds of applications are they running?

WEAVER: We currently have about a dozen suppliers of varying size. We have seen contracts and bids in a wide variety of markets, including bioinformatics, oil and gas, rendering, testing, video gaming, and underpinning others’ resources. One of our most recent successes was simulating 120,000 concurrent users to stress test Quazal’s online gaming engine for a very popular game involving a guitar.

Gt: What industries or what types of applications are ideal for a service like DRI? Are there any up-and-coming use cases that seem exciting in terms of being the next “killer app” for high-performance utility computing?

WEAVER: Our biggest opportunities are in niche fields, bulk processing and creating market stability. Big opportunities present themselves in bioinformatics, but only as proof-of-concept work; larger-scale data mining, including voice to data processing; and underpinning grids or other larger resources with vacillating demands. We hope to eventually be supplying the resources to EC2, Sun and IBM as they realize our ability to mitigate their spikes in consumption.

As for upcoming killer apps, on the product side we have been preaching rendering and rendering processing for a while — products such as Maxwell Render, Blender and eventually Maya Mental Ray. I also believe a new generation of appliances will evolve that the general public will find delightful. Who could have imagined the TV back in 1901? It will probably be something the experts deem trivial, such as photo manipulation, 3-D rendering of traditional video recordings, even Gotcha for camera phones, wherein facial recognition software processed on supercomputers is used for fraternity entertainment. As barriers to the market shrink, new superfluous applications are open pursuit.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This