Compilers and More: The Dangers of COTS Supercomputing

By Michael Wolfe

April 4, 2008

One of the last events at Supercomputing 2007 (SC07) was a panel titled “(Super)Computing on FPGAs, GPUs, Cell and Other Exotic Architectures” on Friday morning.

Jack Dongarra (Univ. Tennessee and ORNL) said that the HPC ecosystem is out of balance; we’ve invested heavily in hardware development, and now we need to invest more heavily in software tools and methods to use the hardware. Rob Pennington (NCSA), the panel moderator, said that the tools will appear when there are enough of these systems out there that the vendors can make money at it. I disagree with both these statements.

In response to Jack Dongarra’s statement, I agree that the investment in software tools for high performance computing has been lacking, but it’s been equally limited for hardware. While I didn’t do a comprehensive survey on the exhibit show floor at SC07 in Reno, almost all the machines displayed there were built from COTS (commodity off-the-shelf) processors, mostly x86-64 from Intel and AMD, some PowerPC from IBM, and in some cases, SPARC and MIPS. Any innovation seems to be in the interconnect, packaging, power, and cooling. Notable exceptions are traditional vector supercomputers from NEC and Cray, and the ClearSpeed accelerators. It seems the HPC market can’t support processor development; current process technology is just too expensive.

There is a great deal of hype and promise for accelerators. However, even here we depend on the commodity market to drive the technology and development, and hope to gain what benefit we can. We are in the dangerous position of depending on the scraps that fall off the PlayStation table — and if they take their picnic and go somewhere else, we’re in real trouble. If you think this is silly, try asking NVIDIA to add a feature to their graphics cards that will speed up your application but will hurt graphics performance. I can hear the laughter already.

Of more concern is what may happen with the mainstream processor business. AMD and Intel have already announced quad-core chips, with plans for eight and more. David Scott (Intel), at a focus session in the HP-CAST user group meeting the Saturday prior to SC07, noted that if you are willing to give up single-core performance, you can put a lot of cores on a single chip, with today’s technology. There are many applications where such a strategy makes a great deal of sense: web services, database transactions — anything that responds to many small, independent requests. Think Google. In fact, most computing might fall into that market, where single thread performance doesn’t matter, only the total throughput.

But not HPC. Imagine having to expose and manage five or ten times more parallelism just to deliver the same performance as a single thread today. To get actual performance improvement, you need yet another factor of parallelism.

But guess who will win that architecture argument.

As for software, the dominant programming model for parallel computers hasn’t changed in almost 20 years, except to replace PVM with MPI. (I count substituting C or C++ for Fortran as a giant step sideways.) Perhaps this is inevitable. Douglass Post (DoD, HPCMP) pointed out at the SC07 panel that the lifetime of a large code is 20 to 30 years, whereas the lifetime of any large HPC system is more like 3 to 4 years. Portability, including performance portability, is more important than peak performance on any one system.

One of PGI’s consultants told us that today’s programmers like the MPI model, if only because it makes their lives easier. They can concentrate on porting and tuning today’s algorithms and programs to MPI, which is a lot of work, but not too mentally demanding. If we move to a model where parallel programming is less work, they’ll have to take on the task of finding better parallel algorithms, which is much more challenging.

So, to correct Jack Dongarra, the problem isn’t balance. The HPC ecosystem is in perfect balance, with little investment and innovation in both hardware and software. We’re in a precarious position now.  The community is able to benefit from the COTS market, but it’s anyone’s guess how long we’ll be able to thrive there.

In response to Rob Pennington, I believe that the HPC market is too small to support an aggressive hardware business, and it’s equally true that it’s too small to support a software tools industry. It may be hard to justify the cost of a large HPC hardware installation, but at least you can proudly give tours of the machine room. It’s hard to justify a large software budget, when all you get is a CD and a book (if you’re lucky).

Take compilers as an example, something near and dear to my heart. Historically, compiler development was taken on by the processor vendor and subsidized by that business. Compilers — and operating systems — hardly generated enough revenue to pay for themselves, but they were strategic investments by the vendors. Today’s HPC compilers are supported by the workstation business, and largely driven by it.

The hope has been that workstations were as complex today as yesteryear’s supercomputers, and need the same complex compilers and tools. So there is a natural fit in requirements and solutions. But some tools are hard to build, notably compilers. If compilers were easy, we wouldn’t have library-based solutions (BLAS, Linpack, MPI, etc.), we’d have extended the languages and compilers to solve those problems. Creating, supporting, and supplying these tools is a big investment and commitment. In almost every problem space, a software vendor can make more money applying that investment and commitment to a larger market than HPC. If HPC users will also buy it, that’s great, but it’s not enough to drive the market. I’m sure that statement will produce a plethora of rebuttals from HPC software vendors, but I’d ask how much of the revenue for those products is for non-HPC platforms.

Many HPC sites act as if they believe they can (or have to) develop all their own software internally. They’ve become a community of blacksmiths, building their own tools, and proud of it, with little need or desire for third party software. To be fair, the HPC market is volatile enough that a certain amount of FUD about dependence on independent software vendors can be justified.

To correct Rob Pennington, the tools will appear only if and when they apply to a larger market, or if some company (unlikely) or government agency (perhaps likely) chooses to make a long-term strategic investment.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This