NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

New system prepares for transformational science

The National Institute for Computational Sciences (NICS) is the newest member of an elite supercomputing community. Dedicated on April 3, the organization — formed through a National Science Foundation (NSF) grant to the University of Tennessee and its partners — is on its way to delivering a soon-to-be petascale system that promises substantial contributions in the effort to solve the world’s greatest scientific challenges, such as understanding the fundamentals of matter and unlocking the secrets to the origin of our universe.

The system, a Cray XT4 dubbed Kraken (after a gargantuan sea creature in Norse mythology), will come online in mid-summer and is expected to feature more than 18,000 2.3GHz AMD high-performance cores delivering 170 teraflops of performance. A new Cray-designed interconnect, featuring Cray SeaStar2 chips and high-speed links, will greatly increase reliability and provide for excellent scaling while eliminating the related cost and complications of external switches.

NICS is seeking “large, tightly coupled applications,” to take advantage of the newly-designed Cray interconnect, said NICS Project Director Phil Andrews. Currently a dozen large-scale applications are poised to run at NICS, spanning a diverse range of scientific fields including climate, fusion energy, biology, lattice QCD, and astrophysics. “ENZO cosmology simulations exhibit near-ideal scaling to 8,000 cores on the XT4,” said Michael Norman, a professor of physics at the University of California, San Diego. “Clearly even larger simulations are possible. This opens up all kinds of new frontiers in understanding cosmic evolution.”

Climate also figures to play a large role in Kraken’s research potential. As climate change continues to gain prominence both in the policy and scientific arenas, powerful systems such as Kraken will play an ever-increasing role in all types of climate simulations, from CO2 cycles to the role of ocean currents. Just as previous efforts in eastern Tennessee contributed substantially to the recent Nobel Prize given to the United Nations’ Intergovernmental Panel on Climate Change, Kraken also will greatly contribute to man’s understanding of his impact on the planet.

The Cray XT4 will ultimately evolve into a Baker system featuring more than 10,000 compute sockets, 100 trillion bytes of memory, and 2,300 trillion bytes of disk space. It will provide more than 700 million CPU hours per year and one petaflops of performance, making it the nation’s most powerful academic supercomputer.

Kraken is designed specifically for sustained application performance, scalability, and reliability and will incorporate key elements of the Cray Cascade system to prepare the user community for highly productive petascale science and engineering. The Cray XT4 will continue to operate in support of users until the Baker system is in full production.

The system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing. The award was won in an open competition among high-performance computing (HPC) resource institutions vying to facilitate America’s continued competitiveness via the next generation of supercomputers.

The NSF used a series of system performance-related benchmarks as a key factor in the selection process, setting the stage for the future of simulation research by employing a system that is usable and reliable and well-suited to computationally-intensive scientific issues, such as protein shape and function and climate modeling.

As the foundation for NICS, (a collaboration of universities, research institutions, and HPC industry leaders), the new system will be fully linked to the NSF-supported TeraGrid, a network of supercomputers across the country that is the world’s largest computational platform for open scientific research.

The NSF award places the University of Tennessee among a select group of supercomputing facilities, including the University of Illinois at Urbana-Champaign and the Texas Advanced Computing Center, likewise an NSF-funded facility. Due to the collaborative relationship between the University of Tennessee and Oak Ridge National Laboratory, NICS promises to deliver state-of-the-art scientific research.

For instance, a team led by Erik Schnetter of Louisiana State University is seeking to understand the merger of binary black hole systems through mesh refinement and multi-block methods and numerical and Einstein-based equations. In particular, these heavily computational simulations will focus on the spins, velocities, and masses of black holes in binary systems.

Another team, led by Carlos Simmerling of the State University of New York at Stony Brook, is seeking to increase our knowledge of biomolecular structure and dynamics. The project’s simulations are shedding light on areas such as possible drugs for the treatment of tuberculosis, the reasons for drug resistance in HIV/AIDS, and the biological role played by the anti-cancer drug Taxol.

Other projects explore galaxy formation and the properties of nanostructures, just to name a few.

“Combined with the more traditional approaches of theory and experiment, scientific computation is a profound tool for insight and solution, as researchers move their problems for modeling and simulation from existing terascale systems to petascale systems later this year and onward to exascale (quintillion calculations per second) systems in the next decade,” states Thomas Zacharia, vice-president for science and technology at UT and the associate lab director for computing and computational sciences at Oak Ridge National Laboratory.

Allocations on the NICS system may be requested via the TeraGrid proposal form. Details about the types and sizes of awards are found at Teragrid Allocations and Accounts (http://www.teragrid.org/userinfo/access/allocations.php), or by calling TeraGrid (toll-free at 1-866-907-2383). NICS is currently fielding requests for projects that will make effective use of more than 10,000 cores for capability jobs. Due to the fact that Kraken is an NSF-funded system, all open science research in the United States is valid for consideration. However, those overseas are also welcome to apply if they are currently working with a researcher based in the United States.

NICS offers researchers a great opportunity to begin to port and scale code on a system that will ultimately move to the petascale. For more information, visit the NICS Web site at www.nics.tennessee.edu.

—–

Source: University of Tennessee

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GENCI Supercomputer Simulation Illuminates the Dark Universe

November 30, 2020

What we can see and touch are, in the scheme of the universe, relatively minor components, with visible matter and tangible mass constituting just 16 percent of the universe’s mass and 30 percent of its energy, respect Read more…

By Oliver Peckham

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

AWS Solution Channel

Add storage to your high-performance file system with a single click and meet your scalability needs

Many organizations have on-premises, high-performance workloads burdened with complex management and scalability challenges. Scaling data-intensive workloads on-premises typically involves purchasing more hardware, which can slow time to production and require high upfront investment. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 20, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 20, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This