NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

New system prepares for transformational science

The National Institute for Computational Sciences (NICS) is the newest member of an elite supercomputing community. Dedicated on April 3, the organization — formed through a National Science Foundation (NSF) grant to the University of Tennessee and its partners — is on its way to delivering a soon-to-be petascale system that promises substantial contributions in the effort to solve the world’s greatest scientific challenges, such as understanding the fundamentals of matter and unlocking the secrets to the origin of our universe.

The system, a Cray XT4 dubbed Kraken (after a gargantuan sea creature in Norse mythology), will come online in mid-summer and is expected to feature more than 18,000 2.3GHz AMD high-performance cores delivering 170 teraflops of performance. A new Cray-designed interconnect, featuring Cray SeaStar2 chips and high-speed links, will greatly increase reliability and provide for excellent scaling while eliminating the related cost and complications of external switches.

NICS is seeking “large, tightly coupled applications,” to take advantage of the newly-designed Cray interconnect, said NICS Project Director Phil Andrews. Currently a dozen large-scale applications are poised to run at NICS, spanning a diverse range of scientific fields including climate, fusion energy, biology, lattice QCD, and astrophysics. “ENZO cosmology simulations exhibit near-ideal scaling to 8,000 cores on the XT4,” said Michael Norman, a professor of physics at the University of California, San Diego. “Clearly even larger simulations are possible. This opens up all kinds of new frontiers in understanding cosmic evolution.”

Climate also figures to play a large role in Kraken’s research potential. As climate change continues to gain prominence both in the policy and scientific arenas, powerful systems such as Kraken will play an ever-increasing role in all types of climate simulations, from CO2 cycles to the role of ocean currents. Just as previous efforts in eastern Tennessee contributed substantially to the recent Nobel Prize given to the United Nations’ Intergovernmental Panel on Climate Change, Kraken also will greatly contribute to man’s understanding of his impact on the planet.

The Cray XT4 will ultimately evolve into a Baker system featuring more than 10,000 compute sockets, 100 trillion bytes of memory, and 2,300 trillion bytes of disk space. It will provide more than 700 million CPU hours per year and one petaflops of performance, making it the nation’s most powerful academic supercomputer.

Kraken is designed specifically for sustained application performance, scalability, and reliability and will incorporate key elements of the Cray Cascade system to prepare the user community for highly productive petascale science and engineering. The Cray XT4 will continue to operate in support of users until the Baker system is in full production.

The system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing. The award was won in an open competition among high-performance computing (HPC) resource institutions vying to facilitate America’s continued competitiveness via the next generation of supercomputers.

The NSF used a series of system performance-related benchmarks as a key factor in the selection process, setting the stage for the future of simulation research by employing a system that is usable and reliable and well-suited to computationally-intensive scientific issues, such as protein shape and function and climate modeling.

As the foundation for NICS, (a collaboration of universities, research institutions, and HPC industry leaders), the new system will be fully linked to the NSF-supported TeraGrid, a network of supercomputers across the country that is the world’s largest computational platform for open scientific research.

The NSF award places the University of Tennessee among a select group of supercomputing facilities, including the University of Illinois at Urbana-Champaign and the Texas Advanced Computing Center, likewise an NSF-funded facility. Due to the collaborative relationship between the University of Tennessee and Oak Ridge National Laboratory, NICS promises to deliver state-of-the-art scientific research.

For instance, a team led by Erik Schnetter of Louisiana State University is seeking to understand the merger of binary black hole systems through mesh refinement and multi-block methods and numerical and Einstein-based equations. In particular, these heavily computational simulations will focus on the spins, velocities, and masses of black holes in binary systems.

Another team, led by Carlos Simmerling of the State University of New York at Stony Brook, is seeking to increase our knowledge of biomolecular structure and dynamics. The project’s simulations are shedding light on areas such as possible drugs for the treatment of tuberculosis, the reasons for drug resistance in HIV/AIDS, and the biological role played by the anti-cancer drug Taxol.

Other projects explore galaxy formation and the properties of nanostructures, just to name a few.

“Combined with the more traditional approaches of theory and experiment, scientific computation is a profound tool for insight and solution, as researchers move their problems for modeling and simulation from existing terascale systems to petascale systems later this year and onward to exascale (quintillion calculations per second) systems in the next decade,” states Thomas Zacharia, vice-president for science and technology at UT and the associate lab director for computing and computational sciences at Oak Ridge National Laboratory.

Allocations on the NICS system may be requested via the TeraGrid proposal form. Details about the types and sizes of awards are found at Teragrid Allocations and Accounts (http://www.teragrid.org/userinfo/access/allocations.php), or by calling TeraGrid (toll-free at 1-866-907-2383). NICS is currently fielding requests for projects that will make effective use of more than 10,000 cores for capability jobs. Due to the fact that Kraken is an NSF-funded system, all open science research in the United States is valid for consideration. However, those overseas are also welcome to apply if they are currently working with a researcher based in the United States.

NICS offers researchers a great opportunity to begin to port and scale code on a system that will ultimately move to the petascale. For more information, visit the NICS Web site at www.nics.tennessee.edu.

—–

Source: University of Tennessee

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here, Monday at 8:30am PT

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire