Compilers and More: Accelerating High Performance

By Michael Wolfe

May 7, 2008

My prediction: High performance computing will soon be dominated by accelerator-based systems.

You may ask: Why will accelerators be better than multicore processors? Why now and not ten years ago? Why accelerators and not exciting new processors? Who will produce them? And how will we migrate to accelerators and how will we program them? I’ll answer these questions in order.

Why accelerators? The market for accelerators has always been, and likely always will be, much smaller than the market for commodity processors. This means that they don’t have a cost model that will support legions of designers and billion-dollar fab plants to use the very latest technology; accelerators will always be, technologically, one or two generations behind the big chip vendors. The big vendors must go after the high volume market to generate the revenue to pay for the most aggressive chip technology. Face it, HPC is not a high volume business.

Given that the clock race has ended, we move to multicore. Multicore designs aimed at the general-purpose market look a lot like shared memory multiprocessors, except with less total memory bandwidth. I’ve heard vendors and researchers point out that we could increase the core count dramatically if we’re willing to simplify the cores by eliminating superscalar instruction issue, speculative and out-of-order instruction execution, register renaming, and so on. This is true, but look at what we’re accomplishing. Today’s aggressive processors manage many levels of low-level parallelism: multiple instructions issued simultaneously, dozens (perhaps a hundred) instructions in flight, speculative memory loads and branch prediction, all managed and synchronized by hardware at clock granularity. We can remove all that and move to software-managed parallelism. Software thread creation, software speculation (and mis-speculation, including squashing), software synchronization, all because the multiple cores have no hardware support for parallelism.

But accelerators can use proven chip technology with lower cost. This allows them to attack smaller markets, even niche markets. Where a major chip vendor makes its bread and butter with binary compatibility, an accelerator can (indeed, must) make up what it lacks in technology using architecture. Today’s Clearspeed and programmable GPUs use multiple SIMD cores with high bandwidth memory. Any number of possible architectures may be replayed in the accelerator arena. These designs embrace parallelism in a way that multicore designs don’t — or won’t. Hardware support for thread creation, synchronization, and so on make small-grain parallelism feasible.

Why now? Previously, the general-purpose chip vendors could always stay a step ahead, or only slightly behind, the accelerators just using clock rates. Who would make the considerable investment in an accelerator when the next generation processor would be just as fast?

Today’s equations lean toward accelerators. Chips aren’t getting faster, just fatter. We’re going to have to invest in parallelism to get any performance increase, with multicore or with accelerators. We should invest in a strategy with the best support for parallelism and with the biggest upside. Accelerators depend on parallelism and have integral support for it; multicore processors are aimed at a much broader market, and only incidentally address HPC issues. Moore’s law still works, for now, and on-chip density will increase predictably. Since accelerators are farther behind on that curve, they can enjoy more of that benefit.

Why not just new processors? We’re back to economics on this question. Trying to develop and market a new processor means migrating a whole software ecosystem. This was done successfully in the RISC revolution of the 1980s, producing today’s SPARC and Power processors, among others. More recently, Intel and HP developed Itanium, which has achieved more limited success. Only a few vendors have the resources to develop a new processor with the full support necessary to make it viable, and those vendors have vested interests in their current processor strategy.

However, a processor with an accelerator can still run standard system software and tools. The migration to such a system can be limited to the HPC applications. Most of the cost of the whole system will be in components that would be necessary anyway; the additional cost of the accelerator is relatively low, but the performance boost is compelling.

Whose accelerators? Accelerators come and go. Some focus on particular applications.The CNAPS chip developed by Adaptive Solutions (founded by a former colleague at the Oregon Graduate Institute) was intended for neural network simulations, and was quite successful at accelerating Photoshop functions. GPUs are, and have always been, accelerators for pixel processing. In HPC today, we have Clearspeed and NVIDIA GPUs. I’m going to declare myself neutral on this question, though I envision a growing industry here, as the cost of entry is relatively low. It will be interesting to see what develops with the open HyperTransport and QuickPath interfaces, and what the chip vendors may put on their own silicon.

How to program accelerators? This is where it gets interesting. The current programming models — NVIDIA’s CUDA, AMD’s Brook+, RapidMind, and other research into stream programming — require a complete rewrite of the computationally intensive portion of the code. Each model constrains the programmer to the types of solutions that will run well in that model. For example, a stream model requires the programmer to define data streams and the operation that takes place, element-wise, on the stream. If the computation can be cast into that model, good performance is assured.

Coming from a compiler background, we at PGI wanted to know whether it is feasible to present as classical a programming model as possible, adding no more complexity than, say, OpenMP, or vectorization pragmas, or directives. Such approaches have many advantages: they are incremental, compatible, and have a long successful history. They are particularly successful if the programming model works efficiently across a range of targets. Codes for vectorizing compilers were largely portable across all vector machines, for instance. It doesn’t relieve the programmer from all rewriting, but it does use a familiar environment for testing and experimentation.

Borrowing from Bob Morgan’s book, “Building an Optimizing Compiler,” we used a thin spike approach to produce an entire toolchain to generate host+accelerator code. We modified our Fortran compiler to accept an “ACCEL/ENDACCEL” directive pair, where a loop between the directives is compiled for the accelerator. Our target was the NVIDIA GPU, and we used parts of their NVCC toolchain. The compiler identified the data that needed to be sent over and back, replaced the loop by runtime calls to initiate the work, brought the results back, and cleaned up afterwards. The result was working object code that we could link and execute. Apart from the compiler, the other parts of the toolchain — linker, make and makefiles, etc. — were unchanged.

And we made it work. Now, this is not a product announcement, or even a preannouncement. We developed this as an internal feasibility demonstration — more like a science fair compiler project. The decision to complete it as a product will depend largely on market forces. Other issues include choosing an accelerator target (or targets) and the commercial longevity of the target. GPUs, for instance, are much less restricted by silly things like binary compatibility, and the vendors come up with new versions every 6-12 months. We probably can’t develop and tune new compilers nearly that quickly.

But the basis is sound. We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This