Swedish Startup Looks to Unleash Multicore

By Michael Feldman

May 29, 2008

As most high performance computing users are aware, the rise of multicore-based systems has spawned a number of problems. One of the most fundamental of them is the memory bandwidth bottleneck. As more cores are added to the die, there is proportionally less cache to serve each one, resulting in more accesses to slower main memory. To state it simply, computational power is growing faster than memory performance.

The result is that additional processor cores often spend an inordinate amount of time waiting for data to crunch on, thereby wasting the computational power of the multiple cores. Avoiding unnecessary main memory accesses and keeping cache usage optimized is critically important for performance since a processor core can execute hundreds of instructions in the time it takes to access a memory location. Chip designers have compensated to some extent by constructing processors with larger multi-level caches and hardware prefetching. Unfortunately, the potential of such hardware is only realized if the software can exploit it. To date, composing high-level source code that is well-tuned for these cache-dependent architectures has been a major challenge.

Help may be on the way. Acumem, a two-year-old Swedish company that operated in semi-stealth mode until recently, has released a new performance analyzer specifically developed to help programmers achieve good cache utilization and optimize memory access. The technology is based on work done by Erik Hagersten, the CTO of Acumem, and his research team at Uppsala University.

Called SlowSpotter, the Acumem tool illuminates “slow spots” in an application and points the developer to the offending source code or data structures. Up until now, performance analysis tools relied on hardware counters, and typically only revealed where a lot of cache misses were occurring — so called hot spots. It was left up to the programmer to figure out what to do with that information. SlowSpotter actually finds the problematic source and suggests ways to tweak the code to optimize performance. Better yet, it ranks the problem areas in the code according to their potential for performance improvement.

For example, a fairly common problem in programs is thrashing the cache by accessing multi-dimensional arrays inefficiently. If a nested loop is traversing a two-dimensional matrix in column order (row order for Fortran), the traversal will touch one element in too many cache lines before returning to touch more data. By that time, the cache line may have been evicted. Usually, by just switching the loop traversal around, cache use is optimized.

Beside loop nesting problems, SlowSpotter will also find code with poor cache line utilization (a section of the code is using high amounts of bandwidth due to inefficient data packing); loop fusion opportunities (two loops are using the same data and may be fused to improve cache usage); irregular access patterns (an irregular data access pattern causing inefficient cache usage); and hot spots (a section of the code with a high amount of cache misses, but with no obvious fix).

Hagersten, a self-proclaimed “cache nerd,” realized that most programmers aren’t equipped to optimize code performance on the modern microprocessor. He says SlowSpotter results are presented in such as way so the average (i.e., non-parallel thinking) programmer can understand the problems and make the necessary code changes.

While the tool is aimed at the least common dominator, experts can benefit too. According to Hagersten, some of the most extreme performance people he knows have used the tool to uncover performance problems in code that they thought they had tuned. One customer — an ISV — bought a site license for the entire company. Even though the ISV had three or four people that focused on performance, they wanted everybody to have the tool to change their mindset about the importance of optimization.

Because of the ubiquity of multicore, the potential audience for SlowSpotter is huge. But the company intends to initially focus on the HPC market, where memory bandwidth limitations are most acute and the users have a better understanding of the problem. And HPC users will be the ones to see the most dramatic speed-ups. “They are getting on the multicore train much faster,” notes Hagersten.

Acumem tested SlowSpotter on a SPEC application benchmark (470.lbm) that uses the “Lattice Boltzmann Method” (LBM) to simulate incompressible fluids in 3D. Using an Intel Core2 Quad Q6600 2.4GHz (1066MHz FSB and equipped with 800 MHz DDR2 RAM), the original code ran only 1.5 times faster on all four cores compared to a single core. After the SlowSpotter optimization was applied, the code ran 3.2 times faster. Even for single core execution, optimization produced a 1.6X speedup.

SlowSpotter runs on x86 processors, but is compiler agnostic, operating on the application binaries themselves. The way the tool works is by attaching to a running application, at which point it collects thread and memory data. The tool then takes a “fingerprint” of the application by sampling data access behavior at between 20,000 and 50,000 code locations, which generates a multi-megabyte data file. The fingerprint can then be used to analyze the behavior of the application. Since the analysis is source code-centric, the collected data can be used to model a system other than the one the application was originally executed on.

“The information you collect here is architecturally independent,” explains Hagersten. “It doesn’t matter what the cache size, cache line size and TLB size are. What we are measuring here in the fingerprint is the locality goodness of the binary.”

Acumem is offering SlowSpotter via its Web site and has wisely provided a free trial version, called SpotLite, so that potential customers can give the technology a spin. Hagersten says the company currently has about a 100 beta users, including national labs, financial institutions, animation studios, and ISVs. Acumen is also part of HP’s Multicore Optimizations program, and has additional partnerships with both AMD and Sun Microsystems.

Josh Simons, distinguished engineer at Sun Microsystems, believes the Acumem offering is well positioned, given that HPC growth is mostly at the lower end of the market — an area where multicore programming skills are limited. He says that any tool that lowers the barrier to taking advantage of these processors is going to be critical. And once you get into the broader market, that kind of expertise becomes extremely rare. “It’s clear that this focus on memory bandwidth is going to go far beyond HPC,” he says. “To me that’s huge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This