Swedish Startup Looks to Unleash Multicore

By Michael Feldman

May 29, 2008

As most high performance computing users are aware, the rise of multicore-based systems has spawned a number of problems. One of the most fundamental of them is the memory bandwidth bottleneck. As more cores are added to the die, there is proportionally less cache to serve each one, resulting in more accesses to slower main memory. To state it simply, computational power is growing faster than memory performance.

The result is that additional processor cores often spend an inordinate amount of time waiting for data to crunch on, thereby wasting the computational power of the multiple cores. Avoiding unnecessary main memory accesses and keeping cache usage optimized is critically important for performance since a processor core can execute hundreds of instructions in the time it takes to access a memory location. Chip designers have compensated to some extent by constructing processors with larger multi-level caches and hardware prefetching. Unfortunately, the potential of such hardware is only realized if the software can exploit it. To date, composing high-level source code that is well-tuned for these cache-dependent architectures has been a major challenge.

Help may be on the way. Acumem, a two-year-old Swedish company that operated in semi-stealth mode until recently, has released a new performance analyzer specifically developed to help programmers achieve good cache utilization and optimize memory access. The technology is based on work done by Erik Hagersten, the CTO of Acumem, and his research team at Uppsala University.

Called SlowSpotter, the Acumem tool illuminates “slow spots” in an application and points the developer to the offending source code or data structures. Up until now, performance analysis tools relied on hardware counters, and typically only revealed where a lot of cache misses were occurring — so called hot spots. It was left up to the programmer to figure out what to do with that information. SlowSpotter actually finds the problematic source and suggests ways to tweak the code to optimize performance. Better yet, it ranks the problem areas in the code according to their potential for performance improvement.

For example, a fairly common problem in programs is thrashing the cache by accessing multi-dimensional arrays inefficiently. If a nested loop is traversing a two-dimensional matrix in column order (row order for Fortran), the traversal will touch one element in too many cache lines before returning to touch more data. By that time, the cache line may have been evicted. Usually, by just switching the loop traversal around, cache use is optimized.

Beside loop nesting problems, SlowSpotter will also find code with poor cache line utilization (a section of the code is using high amounts of bandwidth due to inefficient data packing); loop fusion opportunities (two loops are using the same data and may be fused to improve cache usage); irregular access patterns (an irregular data access pattern causing inefficient cache usage); and hot spots (a section of the code with a high amount of cache misses, but with no obvious fix).

Hagersten, a self-proclaimed “cache nerd,” realized that most programmers aren’t equipped to optimize code performance on the modern microprocessor. He says SlowSpotter results are presented in such as way so the average (i.e., non-parallel thinking) programmer can understand the problems and make the necessary code changes.

While the tool is aimed at the least common dominator, experts can benefit too. According to Hagersten, some of the most extreme performance people he knows have used the tool to uncover performance problems in code that they thought they had tuned. One customer — an ISV — bought a site license for the entire company. Even though the ISV had three or four people that focused on performance, they wanted everybody to have the tool to change their mindset about the importance of optimization.

Because of the ubiquity of multicore, the potential audience for SlowSpotter is huge. But the company intends to initially focus on the HPC market, where memory bandwidth limitations are most acute and the users have a better understanding of the problem. And HPC users will be the ones to see the most dramatic speed-ups. “They are getting on the multicore train much faster,” notes Hagersten.

Acumem tested SlowSpotter on a SPEC application benchmark (470.lbm) that uses the “Lattice Boltzmann Method” (LBM) to simulate incompressible fluids in 3D. Using an Intel Core2 Quad Q6600 2.4GHz (1066MHz FSB and equipped with 800 MHz DDR2 RAM), the original code ran only 1.5 times faster on all four cores compared to a single core. After the SlowSpotter optimization was applied, the code ran 3.2 times faster. Even for single core execution, optimization produced a 1.6X speedup.

SlowSpotter runs on x86 processors, but is compiler agnostic, operating on the application binaries themselves. The way the tool works is by attaching to a running application, at which point it collects thread and memory data. The tool then takes a “fingerprint” of the application by sampling data access behavior at between 20,000 and 50,000 code locations, which generates a multi-megabyte data file. The fingerprint can then be used to analyze the behavior of the application. Since the analysis is source code-centric, the collected data can be used to model a system other than the one the application was originally executed on.

“The information you collect here is architecturally independent,” explains Hagersten. “It doesn’t matter what the cache size, cache line size and TLB size are. What we are measuring here in the fingerprint is the locality goodness of the binary.”

Acumem is offering SlowSpotter via its Web site and has wisely provided a free trial version, called SpotLite, so that potential customers can give the technology a spin. Hagersten says the company currently has about a 100 beta users, including national labs, financial institutions, animation studios, and ISVs. Acumen is also part of HP’s Multicore Optimizations program, and has additional partnerships with both AMD and Sun Microsystems.

Josh Simons, distinguished engineer at Sun Microsystems, believes the Acumem offering is well positioned, given that HPC growth is mostly at the lower end of the market — an area where multicore programming skills are limited. He says that any tool that lowers the barrier to taking advantage of these processors is going to be critical. And once you get into the broader market, that kind of expertise becomes extremely rare. “It’s clear that this focus on memory bandwidth is going to go far beyond HPC,” he says. “To me that’s huge.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire