An Evolutionary Path for High Performance Heterogeneous Multicore Programming

By François Bodin

June 9, 2008

The multicore era has opened the Pandora box of parallel programming environments. Closing it won’t be easy.

Homogeneous multicore processors from Intel or AMD have become mainstream. However heterogeneous architectures such as multicore with GPUs or any hardware specialized accelerators have a better performance/power ratio. When high performance and power efficiency have to be achieved, specialized hardware is often the way to go. Unfortunately, programming such heterogeneous architectures is a headache for any application developer. The embedded market has been mixing different hardware cores for decades and living with this headache at a very high programming cost.

GPUs coupled with Intel or AMD multicore processors are very cost-effective and promising high-performance heterogeneous hardware platforms for general-purpose applications. But they represent the perfect example of the dilemma the developers have to face. GPUs can provide a 10x or greater performance improvement on computations that can be expressed as stream computing. However, contrary to general-purpose cores, no consensus on a programming language for GPUs has been reached, leaving developers with having to mix hardware specific code with their legacy applications.

Also, no parallel programming model such as OpenMP or MPI for homogeneous platforms exists to combine heterogeneous cores. GPUs are loosely coupled with the main CPU; they cannot be time-shared and have no virtual memory. Even if the future of GPUs is not clear — since graphics cores could be integrated on the processor die – they are surely a good example of how thousand of cores might be used by applications. Furthermore, increasing the width of SIMD instructions, such as SSE or Altivec, is also bringing heterogeneity inside cores that compilers alone won’t be able to address.

Code portability is the challenge

Hardware platforms evolve at a tremendous rate, while application software lives almost forever. Portability is very difficult to achieve on multicore architectures. Committing to any hardware-specific or manufacturer-specific programming dialects should be avoided. But this threatens performance, which is the main goal of multicore architectures. The issue is to not only write parallel applications but also to achieve high performance by efficiently mapping computations on available hardware resources. For instance, depending on its execution context (problem size, available units, etc.) a computation might run faster using a GPU rather than the main processor SIMD unit and vice versa. Contrary to traditional parallel architectures that statically allocate parts of the machine to an application, multicore processors are used in a fluctuating environment where processes are competing for the available compute and memory units. While users expect their applications to run on various platform configurations, developers do not expect to build numerous architecture-specific applications.

Parallel programming environments and languages represent a deep issue at the heart of the barely understood hardware/software divide. Computer scientists have been tackling this issue, mainly for scientific computing, for years with mitigated success. For instance, High Performance Fortran, which integrates many features for parallel computers, is the result of a large research community effort. This initiative has pushed forward compilation techniques but has not reached the market. Industry is also in a very difficult position. It has to balance the advantages between bringing an advanced programming technology that will target its own hardware approach — such as NVIDIA’s CUDA language for instance – at the cost of portability, and contributing to a standard that might help competition but increases the overall portfolio of parallel applications.

Resource management is also an open question and a critical issue that is not being addressed by current exploitation of systems. Supercomputers have been avoiding this problem by running only one application at a time or by partitioning the machine nodes. Unfortunately, programming and resource allocation cannot be considered separately. Virtualizing hardware resources is going to help, but the performance issue remains. How can we make sure that competition for hardware resources between applications will not degrade performance?
 
Directive-based programming

To address code portability as well as performance on heterogeneous multicore platforms, CAPS has developed a Hybrid Multicore Parallel Programming (HMPP) workbench, a directive-based programming solution. The aim of HMPP is not only to simplify the use of hardware accelerators in sequential applications but also to keep the application code portable.

The goal is to set up a loose relationship between an application code and the use of a multicore hardware accelerator. HMPP is based on a set of compiler directives and comes with tools and a software runtime that support multicore processor parallel programming in C and Fortran. Subroutines that can be remotely executed on a hardware accelerator are declared via directives. These subroutines can be implemented for different and various hardwares (GPU, SIMD, FPGA, etc.) and also for specific execution contexts. The appropriate execution hardware is selected at runtime depending on the system configuration, the resource availability and data-dependent conditions.

Directives are also used to specify the data transfers with the hardware accelerator on one side and to express when to use a hardware accelerator on the other side. By decoupling the data transfers from the computations, the communication overhead can be minimized. Limited communication and synchronization are in most cases the condition for the successful use of hardware accelerators (see for instance works presented here). Directives have been chosen because they are a good way to add information to programs without introducing target-specific statements in legacy source code.

HMPP provides the programmers with a simple, flexible and portable interface for developing parallel applications whose most computation intensive sections are distributed at runtime over the available specialized and heterogeneous cores. The HMPP approach is similar to the widely available OpenMP standard but designed to handle hardware accelerators. As such, the application source code is kept portable and a sequential binary executable can be built using a traditional compiler. Furthermore, if the hardware accelerator is not available for any reason, the legacy code still can be executed and the application behavior is unchanged.

We believe that, because of the lack of standardization, application development for heterogeneous multicore processors should minimize commitment to code-intrusive techniques. Directives-based approaches are a good alternative for the time being.

About the Author

As chief scientist at CAPS, François Bodin plans, advises and advocates the research and development projects that lead to the creation of innovative software tools. François carries out his research activities at the Irisa research lab with a focus on code optimization and compiler technologies for high performance computers and embedded systems. François is member of HIPEAC, the European Network of Excellence on High-Performance Embedded Architecture and Compilation. François has degrees in computer science from the University of Rennes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire