IBM Roadrunner Takes the Gold in the Petaflop Race

By Michael Feldman

June 9, 2008

Petaflop. Sure it’s just a number, but it’s a big number. On June 10, IBM announced that its Roadrunner supercomputer reached a record-breaking one petaflop — a quadrillion floating point operations per second — using the standard Linpack benchmark. It is the first general-purpose computer to reach this milestone. The new performance record represents more than twice the computational power of the reigning TOP500 champ, Lawrence Livermore’s Blue Gene/L supercomputer.

The $120 million Roadrunner was built, tested, tuned, and benchmarked in Poughkeepsie, New York. Later this summer the 250 ton machine will be shipped to its final designation at Los Alamos National Laboratory in New Mexico, where it will be used by the National Nuclear Security Administration (NNSA) to ensure the safety and reliability of the U.S. nuclear weapons stockpile. It’s been 15 years since the last “live” nuclear weapons test, a period in which the NNSA has relied exclusively on computer simulations to test the nation’s nuclear arsenal.

“In these simulations, there is the confluence of more physics, chemistry and material science than any other scientific enterprise than I’m aware of,” says Demitri Kusnezov, director of the Office of Research, Development and Simulation at the NNSA. “It takes the largest systems to try and simulate very complex questions that the nation depends on every year. Roadrunner is our latest tool in trying to do this. It’s a monumental achievement.”

When not performing weapons simulation duties, Roadrunner will be tapped for unclassified research in astronomy, energy, human genomics, nanoelectronics, and climatology. An IBM application team has already achieved a petaflop (using single precision floating point) on a simulation code for the human brain. Some of the initial testing planned for early 2009 at Los Alamos will involve a number of open science codes. These include applications that simulate the molecular breakdown of cellulose for biofuels, supernova light curves, 3D magnetic reconnection in plasma physics, and time evolution of metallic nanowires.

Roadrunner represents a unique architecture that combines AMD dual-core Opteron processors with the new souped-up IBM Cell (PowerXCell 8i) processors. It is the Cell processors that are doing most of the heavy lifting though. The 6000+ Opterons in the compute blades contribute only 44 teraflops, while the 12,000+ Cell chips contribute 1,332 teraflops. Both numbers reflect peak performance. The sustained Linpack result is 1,026 teraflops, or just over one petaflop.

Drilling down a little, Roadrunner is made up of 17 “connect units (CUs),” each of which is a collection of 180 compute nodes. Each CU sports a 288-port InfiniBand DDR switch that routes 55 miles of optical interconnects throughout the system. A compute node is a “TriBlade,” consisting of a single 2-socket dual-core Opteron LS21 blade connected to two dual-socket QS22 Cell blades. Internally, each Opteron core is connected to one Cell chip over a dedicated PCIe link. While the node-to-node communication for the compute units is all InfiniBand, the machine employs 10GbE to talk to 2 petabytes of external storage, which is supplied by Panasas.

Because most of the compute power relies on the high-performance Cell processor, the system is quite energy efficient. According to IBM, Roadrunner draws 3.9 megawatts, and delivers 376 megaflops/watt, besting even the PowerPC-based Blue Gene/P metric of around 350 megaflops/watt. For comparison, the most energy-efficient Xeon-based supercomputer clusters deliver only about 150 megaflops/watt.

Despite the exotic hardware design, a lot of the effort for the project went into getting all the software in place to make application porting and development easy. Chief IBM Roadrunner engineer, Don Grice believes that multicore/manycore and heterogeneous computing is “the wave of the future,” at least for the next 10 years or so. But, he says, the key to unleashing this power will be developing software that is able to tap into all this processing performance.

IBM uses its internally-developed SDK as well as open source software for the Roadrunner application platform. The software model is based on standard MPI, where each MPI task makes use of one Opteron core and a Cell processor. Custom MPI implementations could presumably change that mix, depending upon the needs of specific workloads. IBM’s SDK DaCS library provides the low-level glue between the Cell and the Opteron pieces, while at the outer level, Red Hat Linux and xCAT cluster management supplies the application’s operating environment.

The ability to optimize memory flow across the system will be the critical factor in unleashing the performance from these hybrid machines. “This feels very similar to the change we made when we went from shared memory to distributed memory…,” observed Grice. “Now we have to figure out how to get around this memory bandwidth wall and heterogeneous cores.”

Grice admits that the software model they have constructed is just a start for making hybrid systems, like Roadrunner, easily programmable. When you combine multiple computing technologies (i.e., heterogeneous instruction sets, multicore processors, vector SIMD units, local memory stores, explicit DMA, on-chip CPU/memory networks, remote accelerators and cluster computing) the developer is going to need a framework that provides some level of hardware independence. For the first cut at this, IBM decided to go the library route as a relatively easy way to glue together the different binaries and help take the complexity out of the heterogeneity. Later versions could involve new programming languages and compiler/runtime technologies.

Roadrunner is part of a larger trend in which supercomputing performance has grown a thousand-fold every ten years. That’s about an order of magnitude greater than could be attributed to Moore’s Law alone. It forces HPC researchers and industry users to constantly rethink the kinds of applications that can be run on the top systems as older machines are made obsolete. The greater performance means simulations can use higher resolutions or longer time periods to develop ever more accurate models. Says Grice: “A job that would take you about a week to run on Roadrunner would have taken you 20 years to run on a machine just 10 years ago.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This