IBM Roadrunner Takes the Gold in the Petaflop Race

By Michael Feldman

June 9, 2008

Petaflop. Sure it’s just a number, but it’s a big number. On June 10, IBM announced that its Roadrunner supercomputer reached a record-breaking one petaflop — a quadrillion floating point operations per second — using the standard Linpack benchmark. It is the first general-purpose computer to reach this milestone. The new performance record represents more than twice the computational power of the reigning TOP500 champ, Lawrence Livermore’s Blue Gene/L supercomputer.

The $120 million Roadrunner was built, tested, tuned, and benchmarked in Poughkeepsie, New York. Later this summer the 250 ton machine will be shipped to its final designation at Los Alamos National Laboratory in New Mexico, where it will be used by the National Nuclear Security Administration (NNSA) to ensure the safety and reliability of the U.S. nuclear weapons stockpile. It’s been 15 years since the last “live” nuclear weapons test, a period in which the NNSA has relied exclusively on computer simulations to test the nation’s nuclear arsenal.

“In these simulations, there is the confluence of more physics, chemistry and material science than any other scientific enterprise than I’m aware of,” says Demitri Kusnezov, director of the Office of Research, Development and Simulation at the NNSA. “It takes the largest systems to try and simulate very complex questions that the nation depends on every year. Roadrunner is our latest tool in trying to do this. It’s a monumental achievement.”

When not performing weapons simulation duties, Roadrunner will be tapped for unclassified research in astronomy, energy, human genomics, nanoelectronics, and climatology. An IBM application team has already achieved a petaflop (using single precision floating point) on a simulation code for the human brain. Some of the initial testing planned for early 2009 at Los Alamos will involve a number of open science codes. These include applications that simulate the molecular breakdown of cellulose for biofuels, supernova light curves, 3D magnetic reconnection in plasma physics, and time evolution of metallic nanowires.

Roadrunner represents a unique architecture that combines AMD dual-core Opteron processors with the new souped-up IBM Cell (PowerXCell 8i) processors. It is the Cell processors that are doing most of the heavy lifting though. The 6000+ Opterons in the compute blades contribute only 44 teraflops, while the 12,000+ Cell chips contribute 1,332 teraflops. Both numbers reflect peak performance. The sustained Linpack result is 1,026 teraflops, or just over one petaflop.

Drilling down a little, Roadrunner is made up of 17 “connect units (CUs),” each of which is a collection of 180 compute nodes. Each CU sports a 288-port InfiniBand DDR switch that routes 55 miles of optical interconnects throughout the system. A compute node is a “TriBlade,” consisting of a single 2-socket dual-core Opteron LS21 blade connected to two dual-socket QS22 Cell blades. Internally, each Opteron core is connected to one Cell chip over a dedicated PCIe link. While the node-to-node communication for the compute units is all InfiniBand, the machine employs 10GbE to talk to 2 petabytes of external storage, which is supplied by Panasas.

Because most of the compute power relies on the high-performance Cell processor, the system is quite energy efficient. According to IBM, Roadrunner draws 3.9 megawatts, and delivers 376 megaflops/watt, besting even the PowerPC-based Blue Gene/P metric of around 350 megaflops/watt. For comparison, the most energy-efficient Xeon-based supercomputer clusters deliver only about 150 megaflops/watt.

Despite the exotic hardware design, a lot of the effort for the project went into getting all the software in place to make application porting and development easy. Chief IBM Roadrunner engineer, Don Grice believes that multicore/manycore and heterogeneous computing is “the wave of the future,” at least for the next 10 years or so. But, he says, the key to unleashing this power will be developing software that is able to tap into all this processing performance.

IBM uses its internally-developed SDK as well as open source software for the Roadrunner application platform. The software model is based on standard MPI, where each MPI task makes use of one Opteron core and a Cell processor. Custom MPI implementations could presumably change that mix, depending upon the needs of specific workloads. IBM’s SDK DaCS library provides the low-level glue between the Cell and the Opteron pieces, while at the outer level, Red Hat Linux and xCAT cluster management supplies the application’s operating environment.

The ability to optimize memory flow across the system will be the critical factor in unleashing the performance from these hybrid machines. “This feels very similar to the change we made when we went from shared memory to distributed memory…,” observed Grice. “Now we have to figure out how to get around this memory bandwidth wall and heterogeneous cores.”

Grice admits that the software model they have constructed is just a start for making hybrid systems, like Roadrunner, easily programmable. When you combine multiple computing technologies (i.e., heterogeneous instruction sets, multicore processors, vector SIMD units, local memory stores, explicit DMA, on-chip CPU/memory networks, remote accelerators and cluster computing) the developer is going to need a framework that provides some level of hardware independence. For the first cut at this, IBM decided to go the library route as a relatively easy way to glue together the different binaries and help take the complexity out of the heterogeneity. Later versions could involve new programming languages and compiler/runtime technologies.

Roadrunner is part of a larger trend in which supercomputing performance has grown a thousand-fold every ten years. That’s about an order of magnitude greater than could be attributed to Moore’s Law alone. It forces HPC researchers and industry users to constantly rethink the kinds of applications that can be run on the top systems as older machines are made obsolete. The greater performance means simulations can use higher resolutions or longer time periods to develop ever more accurate models. Says Grice: “A job that would take you about a week to run on Roadrunner would have taken you 20 years to run on a machine just 10 years ago.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and h Read more…

By Doug Black

AWS to Offer Nvidia’s T4 GPUs for AI Inferencing

March 19, 2019

The AI inference market is booming, prompting well-known hyperscaler and Nvidia partner Amazon Web Services to offer a new cloud instance that addresses the growing cost of scaling inference. The new “G4” instances... Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Research Projects Agency jointly announced a “Real Time Machine Learning” project on March 15 soliciting industry proposals for “foundational breakthroughs” in hardware required to “build systems that respond and adapt in real time.” Read more…

By George Leopold

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This