IBM Roadrunner Takes the Gold in the Petaflop Race

By Michael Feldman

June 9, 2008

Petaflop. Sure it’s just a number, but it’s a big number. On June 10, IBM announced that its Roadrunner supercomputer reached a record-breaking one petaflop — a quadrillion floating point operations per second — using the standard Linpack benchmark. It is the first general-purpose computer to reach this milestone. The new performance record represents more than twice the computational power of the reigning TOP500 champ, Lawrence Livermore’s Blue Gene/L supercomputer.

The $120 million Roadrunner was built, tested, tuned, and benchmarked in Poughkeepsie, New York. Later this summer the 250 ton machine will be shipped to its final designation at Los Alamos National Laboratory in New Mexico, where it will be used by the National Nuclear Security Administration (NNSA) to ensure the safety and reliability of the U.S. nuclear weapons stockpile. It’s been 15 years since the last “live” nuclear weapons test, a period in which the NNSA has relied exclusively on computer simulations to test the nation’s nuclear arsenal.

“In these simulations, there is the confluence of more physics, chemistry and material science than any other scientific enterprise than I’m aware of,” says Demitri Kusnezov, director of the Office of Research, Development and Simulation at the NNSA. “It takes the largest systems to try and simulate very complex questions that the nation depends on every year. Roadrunner is our latest tool in trying to do this. It’s a monumental achievement.”

When not performing weapons simulation duties, Roadrunner will be tapped for unclassified research in astronomy, energy, human genomics, nanoelectronics, and climatology. An IBM application team has already achieved a petaflop (using single precision floating point) on a simulation code for the human brain. Some of the initial testing planned for early 2009 at Los Alamos will involve a number of open science codes. These include applications that simulate the molecular breakdown of cellulose for biofuels, supernova light curves, 3D magnetic reconnection in plasma physics, and time evolution of metallic nanowires.

Roadrunner represents a unique architecture that combines AMD dual-core Opteron processors with the new souped-up IBM Cell (PowerXCell 8i) processors. It is the Cell processors that are doing most of the heavy lifting though. The 6000+ Opterons in the compute blades contribute only 44 teraflops, while the 12,000+ Cell chips contribute 1,332 teraflops. Both numbers reflect peak performance. The sustained Linpack result is 1,026 teraflops, or just over one petaflop.

Drilling down a little, Roadrunner is made up of 17 “connect units (CUs),” each of which is a collection of 180 compute nodes. Each CU sports a 288-port InfiniBand DDR switch that routes 55 miles of optical interconnects throughout the system. A compute node is a “TriBlade,” consisting of a single 2-socket dual-core Opteron LS21 blade connected to two dual-socket QS22 Cell blades. Internally, each Opteron core is connected to one Cell chip over a dedicated PCIe link. While the node-to-node communication for the compute units is all InfiniBand, the machine employs 10GbE to talk to 2 petabytes of external storage, which is supplied by Panasas.

Because most of the compute power relies on the high-performance Cell processor, the system is quite energy efficient. According to IBM, Roadrunner draws 3.9 megawatts, and delivers 376 megaflops/watt, besting even the PowerPC-based Blue Gene/P metric of around 350 megaflops/watt. For comparison, the most energy-efficient Xeon-based supercomputer clusters deliver only about 150 megaflops/watt.

Despite the exotic hardware design, a lot of the effort for the project went into getting all the software in place to make application porting and development easy. Chief IBM Roadrunner engineer, Don Grice believes that multicore/manycore and heterogeneous computing is “the wave of the future,” at least for the next 10 years or so. But, he says, the key to unleashing this power will be developing software that is able to tap into all this processing performance.

IBM uses its internally-developed SDK as well as open source software for the Roadrunner application platform. The software model is based on standard MPI, where each MPI task makes use of one Opteron core and a Cell processor. Custom MPI implementations could presumably change that mix, depending upon the needs of specific workloads. IBM’s SDK DaCS library provides the low-level glue between the Cell and the Opteron pieces, while at the outer level, Red Hat Linux and xCAT cluster management supplies the application’s operating environment.

The ability to optimize memory flow across the system will be the critical factor in unleashing the performance from these hybrid machines. “This feels very similar to the change we made when we went from shared memory to distributed memory…,” observed Grice. “Now we have to figure out how to get around this memory bandwidth wall and heterogeneous cores.”

Grice admits that the software model they have constructed is just a start for making hybrid systems, like Roadrunner, easily programmable. When you combine multiple computing technologies (i.e., heterogeneous instruction sets, multicore processors, vector SIMD units, local memory stores, explicit DMA, on-chip CPU/memory networks, remote accelerators and cluster computing) the developer is going to need a framework that provides some level of hardware independence. For the first cut at this, IBM decided to go the library route as a relatively easy way to glue together the different binaries and help take the complexity out of the heterogeneity. Later versions could involve new programming languages and compiler/runtime technologies.

Roadrunner is part of a larger trend in which supercomputing performance has grown a thousand-fold every ten years. That’s about an order of magnitude greater than could be attributed to Moore’s Law alone. It forces HPC researchers and industry users to constantly rethink the kinds of applications that can be run on the top systems as older machines are made obsolete. The greater performance means simulations can use higher resolutions or longer time periods to develop ever more accurate models. Says Grice: “A job that would take you about a week to run on Roadrunner would have taken you 20 years to run on a machine just 10 years ago.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This