IBM Roadrunner Takes the Gold in the Petaflop Race

By Michael Feldman

June 9, 2008

Petaflop. Sure it’s just a number, but it’s a big number. On June 10, IBM announced that its Roadrunner supercomputer reached a record-breaking one petaflop — a quadrillion floating point operations per second — using the standard Linpack benchmark. It is the first general-purpose computer to reach this milestone. The new performance record represents more than twice the computational power of the reigning TOP500 champ, Lawrence Livermore’s Blue Gene/L supercomputer.

The $120 million Roadrunner was built, tested, tuned, and benchmarked in Poughkeepsie, New York. Later this summer the 250 ton machine will be shipped to its final designation at Los Alamos National Laboratory in New Mexico, where it will be used by the National Nuclear Security Administration (NNSA) to ensure the safety and reliability of the U.S. nuclear weapons stockpile. It’s been 15 years since the last “live” nuclear weapons test, a period in which the NNSA has relied exclusively on computer simulations to test the nation’s nuclear arsenal.

“In these simulations, there is the confluence of more physics, chemistry and material science than any other scientific enterprise than I’m aware of,” says Demitri Kusnezov, director of the Office of Research, Development and Simulation at the NNSA. “It takes the largest systems to try and simulate very complex questions that the nation depends on every year. Roadrunner is our latest tool in trying to do this. It’s a monumental achievement.”

When not performing weapons simulation duties, Roadrunner will be tapped for unclassified research in astronomy, energy, human genomics, nanoelectronics, and climatology. An IBM application team has already achieved a petaflop (using single precision floating point) on a simulation code for the human brain. Some of the initial testing planned for early 2009 at Los Alamos will involve a number of open science codes. These include applications that simulate the molecular breakdown of cellulose for biofuels, supernova light curves, 3D magnetic reconnection in plasma physics, and time evolution of metallic nanowires.

Roadrunner represents a unique architecture that combines AMD dual-core Opteron processors with the new souped-up IBM Cell (PowerXCell 8i) processors. It is the Cell processors that are doing most of the heavy lifting though. The 6000+ Opterons in the compute blades contribute only 44 teraflops, while the 12,000+ Cell chips contribute 1,332 teraflops. Both numbers reflect peak performance. The sustained Linpack result is 1,026 teraflops, or just over one petaflop.

Drilling down a little, Roadrunner is made up of 17 “connect units (CUs),” each of which is a collection of 180 compute nodes. Each CU sports a 288-port InfiniBand DDR switch that routes 55 miles of optical interconnects throughout the system. A compute node is a “TriBlade,” consisting of a single 2-socket dual-core Opteron LS21 blade connected to two dual-socket QS22 Cell blades. Internally, each Opteron core is connected to one Cell chip over a dedicated PCIe link. While the node-to-node communication for the compute units is all InfiniBand, the machine employs 10GbE to talk to 2 petabytes of external storage, which is supplied by Panasas.

Because most of the compute power relies on the high-performance Cell processor, the system is quite energy efficient. According to IBM, Roadrunner draws 3.9 megawatts, and delivers 376 megaflops/watt, besting even the PowerPC-based Blue Gene/P metric of around 350 megaflops/watt. For comparison, the most energy-efficient Xeon-based supercomputer clusters deliver only about 150 megaflops/watt.

Despite the exotic hardware design, a lot of the effort for the project went into getting all the software in place to make application porting and development easy. Chief IBM Roadrunner engineer, Don Grice believes that multicore/manycore and heterogeneous computing is “the wave of the future,” at least for the next 10 years or so. But, he says, the key to unleashing this power will be developing software that is able to tap into all this processing performance.

IBM uses its internally-developed SDK as well as open source software for the Roadrunner application platform. The software model is based on standard MPI, where each MPI task makes use of one Opteron core and a Cell processor. Custom MPI implementations could presumably change that mix, depending upon the needs of specific workloads. IBM’s SDK DaCS library provides the low-level glue between the Cell and the Opteron pieces, while at the outer level, Red Hat Linux and xCAT cluster management supplies the application’s operating environment.

The ability to optimize memory flow across the system will be the critical factor in unleashing the performance from these hybrid machines. “This feels very similar to the change we made when we went from shared memory to distributed memory…,” observed Grice. “Now we have to figure out how to get around this memory bandwidth wall and heterogeneous cores.”

Grice admits that the software model they have constructed is just a start for making hybrid systems, like Roadrunner, easily programmable. When you combine multiple computing technologies (i.e., heterogeneous instruction sets, multicore processors, vector SIMD units, local memory stores, explicit DMA, on-chip CPU/memory networks, remote accelerators and cluster computing) the developer is going to need a framework that provides some level of hardware independence. For the first cut at this, IBM decided to go the library route as a relatively easy way to glue together the different binaries and help take the complexity out of the heterogeneity. Later versions could involve new programming languages and compiler/runtime technologies.

Roadrunner is part of a larger trend in which supercomputing performance has grown a thousand-fold every ten years. That’s about an order of magnitude greater than could be attributed to Moore’s Law alone. It forces HPC researchers and industry users to constantly rethink the kinds of applications that can be run on the top systems as older machines are made obsolete. The greater performance means simulations can use higher resolutions or longer time periods to develop ever more accurate models. Says Grice: “A job that would take you about a week to run on Roadrunner would have taken you 20 years to run on a machine just 10 years ago.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This