IBM Roadrunner Takes the Gold in the Petaflop Race

By Michael Feldman

June 9, 2008

Petaflop. Sure it’s just a number, but it’s a big number. On June 10, IBM announced that its Roadrunner supercomputer reached a record-breaking one petaflop — a quadrillion floating point operations per second — using the standard Linpack benchmark. It is the first general-purpose computer to reach this milestone. The new performance record represents more than twice the computational power of the reigning TOP500 champ, Lawrence Livermore’s Blue Gene/L supercomputer.

The $120 million Roadrunner was built, tested, tuned, and benchmarked in Poughkeepsie, New York. Later this summer the 250 ton machine will be shipped to its final designation at Los Alamos National Laboratory in New Mexico, where it will be used by the National Nuclear Security Administration (NNSA) to ensure the safety and reliability of the U.S. nuclear weapons stockpile. It’s been 15 years since the last “live” nuclear weapons test, a period in which the NNSA has relied exclusively on computer simulations to test the nation’s nuclear arsenal.

“In these simulations, there is the confluence of more physics, chemistry and material science than any other scientific enterprise than I’m aware of,” says Demitri Kusnezov, director of the Office of Research, Development and Simulation at the NNSA. “It takes the largest systems to try and simulate very complex questions that the nation depends on every year. Roadrunner is our latest tool in trying to do this. It’s a monumental achievement.”

When not performing weapons simulation duties, Roadrunner will be tapped for unclassified research in astronomy, energy, human genomics, nanoelectronics, and climatology. An IBM application team has already achieved a petaflop (using single precision floating point) on a simulation code for the human brain. Some of the initial testing planned for early 2009 at Los Alamos will involve a number of open science codes. These include applications that simulate the molecular breakdown of cellulose for biofuels, supernova light curves, 3D magnetic reconnection in plasma physics, and time evolution of metallic nanowires.

Roadrunner represents a unique architecture that combines AMD dual-core Opteron processors with the new souped-up IBM Cell (PowerXCell 8i) processors. It is the Cell processors that are doing most of the heavy lifting though. The 6000+ Opterons in the compute blades contribute only 44 teraflops, while the 12,000+ Cell chips contribute 1,332 teraflops. Both numbers reflect peak performance. The sustained Linpack result is 1,026 teraflops, or just over one petaflop.

Drilling down a little, Roadrunner is made up of 17 “connect units (CUs),” each of which is a collection of 180 compute nodes. Each CU sports a 288-port InfiniBand DDR switch that routes 55 miles of optical interconnects throughout the system. A compute node is a “TriBlade,” consisting of a single 2-socket dual-core Opteron LS21 blade connected to two dual-socket QS22 Cell blades. Internally, each Opteron core is connected to one Cell chip over a dedicated PCIe link. While the node-to-node communication for the compute units is all InfiniBand, the machine employs 10GbE to talk to 2 petabytes of external storage, which is supplied by Panasas.

Because most of the compute power relies on the high-performance Cell processor, the system is quite energy efficient. According to IBM, Roadrunner draws 3.9 megawatts, and delivers 376 megaflops/watt, besting even the PowerPC-based Blue Gene/P metric of around 350 megaflops/watt. For comparison, the most energy-efficient Xeon-based supercomputer clusters deliver only about 150 megaflops/watt.

Despite the exotic hardware design, a lot of the effort for the project went into getting all the software in place to make application porting and development easy. Chief IBM Roadrunner engineer, Don Grice believes that multicore/manycore and heterogeneous computing is “the wave of the future,” at least for the next 10 years or so. But, he says, the key to unleashing this power will be developing software that is able to tap into all this processing performance.

IBM uses its internally-developed SDK as well as open source software for the Roadrunner application platform. The software model is based on standard MPI, where each MPI task makes use of one Opteron core and a Cell processor. Custom MPI implementations could presumably change that mix, depending upon the needs of specific workloads. IBM’s SDK DaCS library provides the low-level glue between the Cell and the Opteron pieces, while at the outer level, Red Hat Linux and xCAT cluster management supplies the application’s operating environment.

The ability to optimize memory flow across the system will be the critical factor in unleashing the performance from these hybrid machines. “This feels very similar to the change we made when we went from shared memory to distributed memory…,” observed Grice. “Now we have to figure out how to get around this memory bandwidth wall and heterogeneous cores.”

Grice admits that the software model they have constructed is just a start for making hybrid systems, like Roadrunner, easily programmable. When you combine multiple computing technologies (i.e., heterogeneous instruction sets, multicore processors, vector SIMD units, local memory stores, explicit DMA, on-chip CPU/memory networks, remote accelerators and cluster computing) the developer is going to need a framework that provides some level of hardware independence. For the first cut at this, IBM decided to go the library route as a relatively easy way to glue together the different binaries and help take the complexity out of the heterogeneity. Later versions could involve new programming languages and compiler/runtime technologies.

Roadrunner is part of a larger trend in which supercomputing performance has grown a thousand-fold every ten years. That’s about an order of magnitude greater than could be attributed to Moore’s Law alone. It forces HPC researchers and industry users to constantly rethink the kinds of applications that can be run on the top systems as older machines are made obsolete. The greater performance means simulations can use higher resolutions or longer time periods to develop ever more accurate models. Says Grice: “A job that would take you about a week to run on Roadrunner would have taken you 20 years to run on a machine just 10 years ago.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This