Researchers Image Magnetic Semiconductors

By Nicole Hemsoth

June 10, 2008

In a first-of-its-kind achievement, scientists at the University of Iowa, the University of Illinois at Urbana-Champaign and Princeton University have directly imaged the magnetic interactions between two magnetic atoms less than one nanometer apart that were embedded in a semiconductor chip.

The findings, scheduled for publication as the cover story of the July 27 issue of the journal Nature, bring scientists one step closer toward realizing the goal of building a very advanced semiconductor computer chip. The chip would be based upon a property of the electron called “spin” and the related technology of “spintronics,” according to Michael Flatté, professor in the UI College of Liberal Arts and Sciences Department of Physics and Astronomy and leader of the UI research group.

“With spintronics, data manipulation and long-term storage can be conducted in one computer chip, rather than separately in a CPU and a hard drive as currently practiced. The data manipulation could also be done quicker and require less power. Such a computer would be much smaller in size and use less energy,” Flatté says.

He adds that some 20 years ago, researchers at IBM discovered that an ordinary semiconducting material, indium arsenide, could be made magnetic at low temperatures by introducing a very small number of magnetic atoms. The magnetic atoms they added were manganese, and soon many other “magnetic semiconductors” were discovered. Gallium arsenide, a semiconductor material used for high-performance devices in cell phones, becomes magnetic when manganese is added, but only at a temperature of -88 C (-126 F). In order for it to be used in future computer chips, magnetic semiconductors like gallium manganese arsenide must remain magnetic at higher temperatures and also be made “cleaner,” or less resistant to current flow.

“Visualizing the magnetic interactions on the nanoscale may lead to better magnetic semiconductor materials and applications for them in the electronics industry,” says Flatté, who along with UI Assistant Research Scientist Jian-Ming Tang predicted that the magnetic interactions could be imaged with a scanning tunneling microscope. “An electron behaves as if it carries a small magnet around with it. This property, called “spin,” has not been used in computer chips to date. If the materials are good enough, then new computer chips that require much less power to run are possible. Even revolutionary 'quantum computers' that use strange quantum phenomena of the atomic world to perform calculations may be possible,” says Flatté.

Flatté and Tang had predicted that the magnetic interactions should depend strongly on where in the crystal lattice of the semiconductor the atoms were sitting. Some configurations interacted very strongly and others very weakly. “We thought it would require a lot of luck to see this effect. Usually when manganese is placed in gallium arsenide, it enters the lattice in many different positions. To see two manganese atoms within a nanometer of each other, but isolated from all other manganese, would be statistically very unlikely,” he says.

Flatté notes that the team took a completely different approach toward seeing the magnetic interactions. Instead of trusting luck to help them find an arrangement of atoms, they placed the manganese atoms one at a time into a fresh, clean piece of gallium arsenide. “Using the tip of a scanning tunneling microscope, we can take out a single atom from the base material and replace it with a single metal that gives the semiconductor its magnetic properties,” says Ali Yazdani, Princeton University physics professor and article co-author. He notes that the effort marks the first time that scientists have achieved this degree of control over the atomic-level structure of a semiconductor. In essence, the team used this unique capability to make a semiconductor magnetic, one atom at a time. “The ability to tailor semiconductors on the atomic scale is the holy grail of electronics, and this method may be the approach that is needed,” says Yazdani.

Dale Kitchen, a researcher in Yazdani's lab, hit upon the solution while working with a high-tech tool used to explore complex materials called a scanning tunneling microscope, a device that operates very differently from a desktop optical microscope. The device has a finely-pointed electrical probe that passes over a surface in order to detect variations with a weak electric field. The team, however, found that the charged tip could also be used to eject a single gallium atom from the surface, replacing it with one of manganese that was waiting nearby.

By incorporating manganese atoms into the gallium arsenide semiconductor, the team has created an atomic-scale laboratory that can reveal what researchers have sought for decades: the precise interactions among atoms and electrons in chip materials. The team used their new technique to find the optimal arrangements for manganese atoms that enhance the magnetic properties of gallium manganese arsenide. These arrangements agreed with Flatté and Tang's predictions. “To predict how a material will behave, and then have that prediction dramatically confirmed, as in this experiment, is one of the most enjoyable experiences of research,” says Flatté.

Flatté cautions that further advances will be required to translate the new research results into new chip technology and also that using a scanning tunneling microscope to grow large pieces of high quality gallium manganese arsenide may not be practical. However, he says, the lessons learned about optimal arrangements of magnetic atoms in semiconductors will be transferred to other semiconductor growth techniques and to other magnetic semiconductor materials.

The research project was funded in part by the National Science Foundation and the U.S. Army Research Office.

—–

Source: University of Iowa News Services

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire